[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Unsupervised Learning of Verb Argument Structures

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2006)

Abstract

We present a statistical generative model for unsupervised learning of verb argument structures. The model was used to automatically induce the argument structures for the 1,500 most frequent verbs of English. In an evaluation carried out for a representative sample of verbs, more than 90% of the induced argument structures were judged correct by human subjects. The induced structures also overlap significantly with those in PropBank, exhibiting some correct patterns of usage that are not present in this manually developed semantic resource.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet project. In: The Proceed-ings of COLING/ACL, Montreal, pp. 86–90 (1998)

    Google Scholar 

  • Bikel, D.M., Schwartz, R., Weischedel, R.M.: An Algorithm that Learns What’s in a Name. Machine Learning (1999) (Special Issue on NLP)

    Google Scholar 

  • Brent, M.R.: Automatic acquisition of subcategorization frames from untagged text. In: The Proceedings of the 29th Annual Meeting of the Association for Computational Linguistics, Berkeley, CA, pp. 209–214 (1991)

    Google Scholar 

  • Briscoe, T., Carroll, J.: Automatic extraction of subcategorization from corpora. In: The Proceedings of the 5th ANLP Conference, Washington, D.C, pp. 356–363 (1997)

    Google Scholar 

  • Brown, P., Cocke, J., Della Pietra, S., Della Pietra, V., Jelinek, F., Lafferty, J., Mercer, R., Roossin, P.: A statistical approach to machine translation. Computational Linguistics 16(2), 79–85 (1990)

    Google Scholar 

  • Brown, P., Della Pietra, S., Della Pietra, V., Mercer, R.: The mathematics of statistical machine translation: Parameter estimation. Computational Linguistics 2(19), 263–311 (1993)

    Google Scholar 

  • Carletta, J.: Assessing Agreement on Classification Tasks: The Kappa Statistic. Compu-tational Linguistics 22(2), 249–254 (1996)

    Google Scholar 

  • Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, Ser B 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  • Framis, F.R.: An experiment on learning appropriate selection restrictions from a parsed corpus. In: the Proceedings of the International Conference on Computational Linguistics, Kyoto, Japan (1994)

    Google Scholar 

  • Gildea, D.: Probabilistic Models of Verb-Argument Structure. In: the Proceedings of the 17th International Conference on Computational Linguistics (2002)

    Google Scholar 

  • Gomez, F.: Building Verb Predicates: A Computational View. In: the Proceedings of the 42nd Meeting of the Association for Computational Linguistics, Barcelona, Spain, pp. 359–366 (2004)

    Google Scholar 

  • Green, R., Dorr, B.J., Resnik, P.: Inducing Frame Semantic Verb Classes from WordNet and LDOCE. In: the Proceedings of the 42nd Meeting of the Association for Computational Linguistics, Barcelona, Spain, pp. 375–382 (2004)

    Google Scholar 

  • Grishman, R., Sterling, J.: Acquisition of selectional patterns. In: the Proceedings of the International Conference on Computational Linguistics, Nantes, France, pp. 658–664 (1992)

    Google Scholar 

  • Grishman, R., Sterling, J.: Generalizing Automatically Generated Selectional Pat-terns. In: The Proceedings of the 15th International Conference on Computational Linguistics, Kyoto, Japan (1994)

    Google Scholar 

  • Kingsbury, P., Palmer, M.: From Treebank to PropBank. In: The Proceedings of the 3rd International Conference on Language Resources and Evaluation, Las Palmas (2002)

    Google Scholar 

  • Kipper, K., Dang, H.T., Palmer, M.: Class-based Construction of a Verb Lexicon. In: The Proceedings of AAAI 17th National Conference on Artificial Intelligence, Austin, Texas (2000)

    Google Scholar 

  • Knight, K., Marcu, D.: Summarization beyond sentence extraction: A Probabilistic Approach to Sentence Compression. Artificial Intelligence 139(1) (2002)

    Google Scholar 

  • Korhonen, A.: Semantically Motivated Subcategorization Acquisition. In: The Proceedings of the Workshop of the ACL Special Interest Group on the Lexicon, pp. 51–58 (2002)

    Google Scholar 

  • Lapata, M.: Acquiring lexical generalizations from corpora: A case study for diathesis alternations. In: the Proceedings of the 37th Annual Meeting of the Association for Computa-tional Linguistics, pp. 394–404 (1999)

    Google Scholar 

  • Levin, B.: Towards a lexical organization of English verbs. Chicago University Press, Chicago (1993)

    Google Scholar 

  • Manning, C.: Automatic acquisition of a large subcategorization dictionary from cor-pora. In: The Proceedings of the 31st Annual Meeting of the Association for Computational Linguistics, Columbus, Ohio, pp. 235–242 (1993)

    Google Scholar 

  • Marcu, D., Popescu, A.M.: Towards Developing Probabilistic Generative Models for Reasoning with Natural Language Representations. In: The Proceedings of the 6th Interna-tional Conference on Computational Linguistics and Text Processing. LNCS, vol. 2406. Springer, Mexico (2005), ISBN 3-540-24523-5

    Google Scholar 

  • Marcus, M., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated corpus of English: the Penn Treebank. Computational Linguistics 19(2), 313–330 (1993)

    Google Scholar 

  • Marcus, M.: The Penn Treebank: A revised corpus design for extracting predicate-argument structure. In: The Proceedings of the ARPA Human Language Technology Workshop, Princeton, NJ (1994)

    Google Scholar 

  • McCarthy, D.: Using semantic preferences to identify verbal participation in role switch-ing alternations. In: The Proceedings of the 1st NAACL, Seattle, Washington, pp. 256–263 (2000)

    Google Scholar 

  • Merlo, P., Stevenson, S.: Automatic Verb Classification Based on Statistical Distri-butions of Argument Structure. Computational Linguistics 27(3) (2001)

    Google Scholar 

  • Ratnaparki, A.: A Maximum Entropy Part-Of-Speech Tagger. In: The Proceedings of the Empirical Methods in Natural Language Processing Conference, University of Pennsylvania (1996)

    Google Scholar 

  • Resnik, P.: Wordnet and distributional analysis: a class-based approach to lexical dis-covery. In: The Proceedings of AAAI Workshop on Statistical Methods in NLP (1992)

    Google Scholar 

  • Rooth, M., Stefan, R., Prescher, D., Carroll, G., Beil, F.: Inducing a semantically anno-tated lexicon via EM-based clustering. In: The Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics, College Park, Maryland, pp. 104–111 (1999)

    Google Scholar 

  • Sarkar, A., Zeman, D.: Automatic extraction of subcategorization frames for Czech. In: The Proceedings of the 18th International Conference on Computational Linguistics (2000)

    Google Scholar 

  • Sarkar, A., Tripasai, W.: Learning Verb Argument Structures from Minimally Anno-tated Corpora. In: The Proceedings of the 19th International Conference on Computational Linguistics (2002)

    Google Scholar 

  • Soricut, R., Brill, E.: Automatic Question Answering: Beyond the Factoid. In: The Proceedings of the Human Language Technology and North American Association for Com-putational Linguistics Conference (2004)

    Google Scholar 

  • Voorhees, E.M., Buckland, L.P.(eds.): NIST Special Publication 500-251: The Eleventh Text REtrieval Conference (TREC 2002), Department of Commerce, National Insti-tute of Standards and Technology (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pardo, T.A.S., Marcu, D., Nunes, M.d.G.V. (2006). Unsupervised Learning of Verb Argument Structures. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2006. Lecture Notes in Computer Science, vol 3878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11671299_7

Download citation

  • DOI: https://doi.org/10.1007/11671299_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32205-4

  • Online ISBN: 978-3-540-32206-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics