[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Agglomerate Multilevel Preconditioner for Linear Isostasy Saddle Point Problems

  • Conference paper
Large-Scale Scientific Computing (LSSC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3743))

Included in the following conference series:

  • 1895 Accesses

Abstract

This paper discusses preconditioners for the iterative solution of nonsymmetric indefinite linear algebraic systems of equations as arising in modeling of the purely elastic part of glacial rebound processes. The iteration scheme is of inner-outer type using a multilevel preconditioner for the inner solver. Numerical experiments are provided showing a robust behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Axelsson, O., Barker, V.A., Neytcheva, M., Polman, B.: Solving the Stokes problem on a massively parallel computer. Math. Model. Anal. 4, 1–22 (2000)

    Google Scholar 

  2. Axelsson, O., Neytcheva, M.: Preconditioning methods for constrained optimization problems. Num. Lin. Alg. Appl. 10, 3–31 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Axelsson, O., Vassilevski, P.S.: Algebraic multilevel preconditioning methods. I. Numer. Math. 56(2–3), 157–177 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bangerth, W., Hartmann, R., Kanschat, G.: deal. II Differential Equations Analysis Library, Technical Reference, IWR, http://www.dealii.org

  5. Bängtsson, E., Neytcheva, M.: Numerical simulations of glacial rebound using preconditioned iterative solution methods. Appl. Math. 50(3), 183–201 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Mathematica, 1–137 (2005)

    Google Scholar 

  7. Botta, E.F.F., Wubs, F.W.: Matrix renumbering ILU: an effective algebraic multilevel ILU preconditioner for sparse matrices. SIAM J. Matrix anal. Appl. 20(4), 1007–1026 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jones, J.E., Vassilevski, P.S.: AMGE based on element agglomeration. SIAM J. Sci. Comput. 23(1), 100–133 (2001)

    Article  MathSciNet  Google Scholar 

  9. Kay, D., Loghin, D., Wathen, A.: A preconditioner for the steady-state Navier- Stokes equations. SIAM J. Sci. Comput. 24(1), 237–256 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kraus, J.K.: Algebraic multilevel preconditioning of finite element matrices using local Schur complements. Num. Lin. Alg. Appl. 12, 1–19 (2005)

    Article  Google Scholar 

  11. Notay, Y.: Using approximate inverses in algebraic multilevel methods. Num. Math. 80(3), 397–417 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Portable, Extensible Toolkit for Scientific computation (PETSc) suite, Mathematics and Computer Science Division, Argonne National Laboratory, http://www-unix.mcs.anl.gov/petsc/

  13. Saad, Y.: ILUT: a Dual Threshold Incomplete LU Factorization. Num. Lin. Alg. Appl. 1, 387–402 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Saad, Y., Suchomel, B.: ARMS: an algebraic recursive multilevel solver for general sparse linear systems. Num. Lin. Alg. Appl. 9, 359–378 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bängtsson, E., Neytcheva, M. (2006). An Agglomerate Multilevel Preconditioner for Linear Isostasy Saddle Point Problems. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2005. Lecture Notes in Computer Science, vol 3743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11666806_11

Download citation

  • DOI: https://doi.org/10.1007/11666806_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31994-8

  • Online ISBN: 978-3-540-31995-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics