Abstract
This paper discusses preconditioners for the iterative solution of nonsymmetric indefinite linear algebraic systems of equations as arising in modeling of the purely elastic part of glacial rebound processes. The iteration scheme is of inner-outer type using a multilevel preconditioner for the inner solver. Numerical experiments are provided showing a robust behavior.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Axelsson, O., Barker, V.A., Neytcheva, M., Polman, B.: Solving the Stokes problem on a massively parallel computer. Math. Model. Anal. 4, 1–22 (2000)
Axelsson, O., Neytcheva, M.: Preconditioning methods for constrained optimization problems. Num. Lin. Alg. Appl. 10, 3–31 (2003)
Axelsson, O., Vassilevski, P.S.: Algebraic multilevel preconditioning methods. I. Numer. Math. 56(2–3), 157–177 (1989)
Bangerth, W., Hartmann, R., Kanschat, G.: deal. II Differential Equations Analysis Library, Technical Reference, IWR, http://www.dealii.org
Bängtsson, E., Neytcheva, M.: Numerical simulations of glacial rebound using preconditioned iterative solution methods. Appl. Math. 50(3), 183–201 (2005)
Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Mathematica, 1–137 (2005)
Botta, E.F.F., Wubs, F.W.: Matrix renumbering ILU: an effective algebraic multilevel ILU preconditioner for sparse matrices. SIAM J. Matrix anal. Appl. 20(4), 1007–1026 (1999)
Jones, J.E., Vassilevski, P.S.: AMGE based on element agglomeration. SIAM J. Sci. Comput. 23(1), 100–133 (2001)
Kay, D., Loghin, D., Wathen, A.: A preconditioner for the steady-state Navier- Stokes equations. SIAM J. Sci. Comput. 24(1), 237–256 (2002)
Kraus, J.K.: Algebraic multilevel preconditioning of finite element matrices using local Schur complements. Num. Lin. Alg. Appl. 12, 1–19 (2005)
Notay, Y.: Using approximate inverses in algebraic multilevel methods. Num. Math. 80(3), 397–417 (1998)
Portable, Extensible Toolkit for Scientific computation (PETSc) suite, Mathematics and Computer Science Division, Argonne National Laboratory, http://www-unix.mcs.anl.gov/petsc/
Saad, Y.: ILUT: a Dual Threshold Incomplete LU Factorization. Num. Lin. Alg. Appl. 1, 387–402 (1994)
Saad, Y., Suchomel, B.: ARMS: an algebraic recursive multilevel solver for general sparse linear systems. Num. Lin. Alg. Appl. 9, 359–378 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bängtsson, E., Neytcheva, M. (2006). An Agglomerate Multilevel Preconditioner for Linear Isostasy Saddle Point Problems. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2005. Lecture Notes in Computer Science, vol 3743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11666806_11
Download citation
DOI: https://doi.org/10.1007/11666806_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31994-8
Online ISBN: 978-3-540-31995-5
eBook Packages: Computer ScienceComputer Science (R0)