[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Automatic Vehicle Detection Using Statistical Approach

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3852))

Included in the following conference series:

  • 2218 Accesses

Abstract

This study develops a statistical approach to the automatic detection of vehicles. Compared to traditional approaches, which consider the entire 2-dimensional vehicle region, this study uses three meaningful local features for each vehicle to perform vehicle detection. The proposed approach has a superior tolerance toward wider viewing angles and partial occlusions. Four possible models for vehicle detection are evaluated in the current training and testing processes. For the process of the best model, each local subregion projects into corresponding eigenspace and residual independent basis space with subregion position information. We further simplify the procedure steps of computing the independent component analysis (ICA) in residual space without constructing residual images in order to reduce the computational time. Then the joint probability of projection weight vectors and coefficient vectors of local subregions and positions of local subregions, is used to model the vehicle. Finally, we introduce vector quantization with a new classification method to accelerate the posterior probability calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, S., Roth, D.: Learning to Detect Objects in Images via a Sparse, Part-based Representation. IEEE Tran. on PAMI 26(11), 1475–1490 (2004)

    Google Scholar 

  2. Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face Recognition by ICA. IEEE Tran. on Neural Networks 13(6), 1450–1464 (2002)

    Article  Google Scholar 

  3. Betke, M., Haritaoglu, E., Davis, L.S.: Multiple Vehicle Detection and Tracking in Hard Real Time. In: IEEE Intelligent Vehicles Symposium, pp. 351–356 (1996)

    Google Scholar 

  4. Broggi, A.: Visual Perception of Obstacles and Vehicles for Platooning. IEEE Tran. on ITS 1(3), 164–176 (2000)

    Google Scholar 

  5. Dellaert, F.: CANSS: A Candidate Selection and Search Algorithm to Initialize Car Tracking, CMU-RI-TR-97-34 (1997)

    Google Scholar 

  6. Fergus, R., Perona, P., Zisserman, A.: Object Class Recognition by Unsupervised Scale-Invariant Learning. In: IEEE Con. on CVPR, vol. 2, pp. 264–271 (2003)

    Google Scholar 

  7. Heisele, B., Ho, P., Wu, J., Poggio, T.: Face Recognition: Component-based versus Global Approaches. Computer Vision and Image Understanding 91(1/2), 6–21 (2003)

    Article  Google Scholar 

  8. Jurie, F., Schmid, C.: Scale-Invariant Shape Features for Recognition of Object Categories. In: IEEE Con. on CVPR, pp. 90–96 (2004)

    Google Scholar 

  9. Kagesawa, M., Ueno, S., Ikeuchi, K., Kashiwagi, H.: Recognizing Vehicles in Infrared Images Using IMAP Parallel Vision Board. IEEE Tran. on ITS 2, 10–17 (2001)

    Google Scholar 

  10. Kato, T., Ninomiya, Y., Masaki, I.: Preceding Vehicle Recognition Based on Learning From Sample Images. IEEE Tran. on ITS 3(4), 252–260 (2002)

    Google Scholar 

  11. Kim, T.K., Kim, H., Hwang, W., Kee, S.C., Kittler, J.: Independent Component Analysis in a Facial Local Residual Space. IEEE Tran. on PR 37, 1873–1885 (2004)

    Google Scholar 

  12. Leung, B.: Component-based Car Detection in Street Scene Images, Master Thesis, Department of Electrical Engineering and Computer Science, MIT (May 2004)

    Google Scholar 

  13. Moghaddam, B., Pentland, A.: Probabilistic Visual Learning for Object Representation. IEEE Tran. on PAMI 19(7), 696–710 (1997)

    Google Scholar 

  14. Schneiderman, H., Kanade, T.: Object Detection Using the Statistic of Parts. Int.l Journal of Computer Vision 56, 151–177 (2003)

    Article  Google Scholar 

  15. Schneiderman, H., Kanade, T.: Probabilistic Modelig of Local Appearance and Spatial Relationships for Object Recognition. In: IEEE Con. on CVPR, pp. 45–51 (1998)

    Google Scholar 

  16. Sun, Z., Bebis, G., Miller, R.: Object Detection Using Feature Subset Selection. Pattern Recognition Letter 37, 2165–2176 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, CC.R., Lien, JJ.J. (2006). Automatic Vehicle Detection Using Statistical Approach. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3852. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612704_18

Download citation

  • DOI: https://doi.org/10.1007/11612704_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31244-4

  • Online ISBN: 978-3-540-32432-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics