[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Complexity and Exact Algorithms for Multicut

  • Conference paper
SOFSEM 2006: Theory and Practice of Computer Science (SOFSEM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3831))

Abstract

The Multicut problem is defined as: given an undirected graph and a collection of pairs of terminal vertices, find a minimum set of edges or vertices whose removal disconnects each pair. We mainly focus on the case of removing vertices, where we distinguish between allowing or disallowing the removal of terminal vertices. Complementing and refining previous results from the literature, we provide several NP-completeness and (fixed-parameter) tractability results for restricted classes of graphs such as trees, interval graphs, and graphs of bounded treewidth.

Research supported by the Deutsche Forschungsgemeinschaft (DFG), Emmy Noether research group PIAF (fixed-parameter algorithms), NI 369/4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Booth, K.S., Lueker, G.S.: Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms. Journal of Computer and System Sciences 13, 335–379 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Costa, M., Létocart, L., Roupin, F.: Minimal Multicut and Maximal Integer Multiflow: a Survey. European Journal of Operational Research 162(1), 55–69 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Călinescu, G., Fernandes, C.G., Reed, B.: Multicuts in Unweighted Graphs and Digraphs with Bounded Degree and Bounded Tree-Width. Journal of Algorithms 48, 333–359 (2003)

    Article  MATH  Google Scholar 

  4. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The Complexity of Multiterminal Cuts. SIAM Journal on Computing 23(4), 864–894 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Erdős, P.L., Székely, L.A.: Evolutionary Trees: an Integer Multicommodity Max-Flow–Min-Cut Theorem. Advances in Applied Mathematics 13, 375–389 (1992)

    Article  MathSciNet  Google Scholar 

  6. Garg, N., Vazirani, V., Yannakakis, M.: Primal-Dual Approximation Algorithms for Integral Flow and Multicut in Trees. Algorithmica 18(1), 3–20 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Guo, J., Niedermeier, R.: Exact Algorithms and Applications for Tree-Like Weighted Set Cover. To appear in Journal of Discrete Algorithms (2005)

    Google Scholar 

  8. Guo, J., Niedermeier, R.: Fixed-Parameter Tractability and Data Reduction for Multicut in Trees. Networks 46(3), 124–135 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Marx, D.: Parameterized Graph Separation Problems. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 71–82. Springer, Heidelberg (2004); Long version to appear in Theoretical Computer Science

    Chapter  Google Scholar 

  10. Veinott, A.F., Wagner, H.M.: Optimal Capacity Scheduling. Operations Research 10, 518–532 (1962)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, J., Hüffner, F., Kenar, E., Niedermeier, R., Uhlmann, J. (2006). Complexity and Exact Algorithms for Multicut. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds) SOFSEM 2006: Theory and Practice of Computer Science. SOFSEM 2006. Lecture Notes in Computer Science, vol 3831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11611257_28

Download citation

  • DOI: https://doi.org/10.1007/11611257_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31198-0

  • Online ISBN: 978-3-540-32217-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics