Abstract
We show that an infinite isometry f on {0,1}ω, i.e. computable by an infinite transducer T f , can be represented finitarily, provided the isometry [σ,f] := σ − 1 ∘ f − 1 ∘ σ ∘ f, the shift commutator of f, is finite, i.e. has a finite transducer T [σ,f]. We can describe all states of T f as words over Q [σ,f] and, using the nextstate and output functions of T [σ,f], obtain linear time algorithms for T f (in the length of the word in \(Q^*_{[ \sigma,f ]}\) describing the state in Q f ). The task of determining state equivalence within the first n input symbols or N=2n + 1-1 states is polynomial in the number N of states, if the shift commutator is finite.
Supported by FONDECYT 1040975, CONICYT. Partly supported by DID–UACh.
Similar content being viewed by others
References
del Canales, M.P., Vielhaber, M.: Isometries of binary formal power series and their shift commutators. Electronic Colloq. on Comput. Compl. TR04–057 (2004)
Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vielhaber, M., del Pilar Canales Ch., M. (2006). On a Class of Bijective Binary Transducers with Finitary Description Despite Infinite State Set. In: Farré, J., Litovsky, I., Schmitz, S. (eds) Implementation and Application of Automata. CIAA 2005. Lecture Notes in Computer Science, vol 3845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11605157_36
Download citation
DOI: https://doi.org/10.1007/11605157_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31023-5
Online ISBN: 978-3-540-33097-4
eBook Packages: Computer ScienceComputer Science (R0)