[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Deeper Connections Between LTL and Alternating Automata

  • Conference paper
Implementation and Application of Automata (CIAA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3845))

Included in the following conference series:

Abstract

It is known that Linear Temporal Logic (LTL) has the same expressive power as alternating 1-weak automata (A1W automata, also called alternating linear automata or very weak alternating automata). A translation of LTL formulae into a language equivalent A1W automata has been introduced in [1]. The inverse translation has been developed independently in [2] and [3]. In the first part of the paper we show that the latter translation wastes temporal operators and we propose some improvements of this translation. The second part of the paper draws a direct connection between fragments of the Until-Release hierarchy [4] and alternation depth of nonaccepting and accepting states in A1W automata. We also indicate some corollaries and applications of these results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Muller, D.E., Saoudi, A., Schupp, P.E.: Weak alternating automata give a simple explanation of why most temporal and dynamic logics are decidable in exponential time. In: Proceedings of the 3rd IEEE Symposium on Logic in Computer Science (LICS 1988), pp. 422–427. IEEE Computer Society Press, Los Alamitos (1988)

    Google Scholar 

  2. Rohde, S.: Alternating automata and the temporal logic of ordinals. PhD thesis, University of Illinois at Urbana-Champaign (1997)

    Google Scholar 

  3. Löding, C., Thomas, W.: Alternating automata and logics over infinite words (extended abstract). In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 521–535. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Černá, I., Pelánek, R.: Relating hierarchy of temporal properties to model checking. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, Springer, Heidelberg (2003)

    Google Scholar 

  5. Wolper, P., Vardi, M.Y., Sistla, A.P.: Reasoning about infinite computation paths (extended abstract). In: 24th Annual Symposium on Foundations of Computer Science, pp. 185–194. IEEE, Los Alamitos (1983)

    Google Scholar 

  6. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computation 115, 1–37 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proceedings of the First Symposium on Logic in Computer Science, Cambridge, pp. 322–331 (1986)

    Google Scholar 

  8. Wolper, P.: Temporal logic can be more expressive. Information and Control 56, 72–99 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Tauriainen, H.: On translating linear temporal logic into alternating and nondeterministic automata. Research Report A83, Helsinki University of Technology, Laboratory for Theoretical Computer Science (2003)

    Google Scholar 

  11. Vardi, M.Y.: Alternating automata: Unifying truth and validity checking for temporal logics. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 191–206. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  12. Thérien, D., Wilke, T.: Temporal logic and semidirect products: An effective characterization of the until hierarchy. In: 37th Annual Symposium on Foundations of Computer Science (FOCS 1996), pp. 256–263. IEEE, Los Alamitos (1996)

    Google Scholar 

  13. Etessami, K., Wilke, T.: An until hierarchy and other applications of an Ehrenfeucht-Fraïssé game for temporal logic. Information and Computation 160, 88–108 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kučera, A., Strejček, J.: The stuttering principle revisited. Acta Informatica (to appear, 2005)

    Google Scholar 

  15. Kučera, A., Strejček, J.: Characteristic patterns for LTL. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 239–249. Springer, Heidelberg (2005)

    Google Scholar 

  16. Perrin, D., Pin, J.E.: Infinite words. Pure and Applied Mathematics, vol. 141. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  17. Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: Proc. ACM Symposium on Principles of Distributed Computing, pp. 377–410. ACM Press, New York (1990)

    Chapter  Google Scholar 

  18. Chang, E., Manna, Z., Pnueli, A.: Characterization of temporal property classes. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 474–486. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  19. Pelánek, R., Strejček, J.: Deeper connections between ltl and alternating automata. Technical Report FIMU-RS-2004-08, Faculty of Informatics, Masaryk University in Brno (2004), available at http://www.fi.muni.cz/reports/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pelánek, R., Strejček, J. (2006). Deeper Connections Between LTL and Alternating Automata. In: Farré, J., Litovsky, I., Schmitz, S. (eds) Implementation and Application of Automata. CIAA 2005. Lecture Notes in Computer Science, vol 3845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11605157_20

Download citation

  • DOI: https://doi.org/10.1007/11605157_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31023-5

  • Online ISBN: 978-3-540-33097-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics