Abstract
This paper addresses the problem of generating deterministic ω-automata for formulas of linear temporal logic, which can be solved by applying well-known algorithms to construct a nondeterministic Büchi automaton for the given formula on which we then apply a determinization algorithm. We study here in detail Safra’s determinization algorithm, present several heuristics that attempt to decrease the size of the resulting automata and report on experimental results.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Thomas, W.: Languages, automata, and logic. Handbook of formal languages 3, 389–455 (1997)
Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)
de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University, Department of Computer Science (1997)
Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time logic with fairness. Distributed Computing 11, 125–155 (1998)
Vardi, M.: Probabilistic linear-time model checking: An overview of the automata-theoretic approach. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 265–276. Springer, Heidelberg (1999)
Safra, S.: On the complexity of ω-automata. In: Proc. 29th Annual Symposium on Foundations of Computer Science (FOCS), pp. 319–327. IEEE Computer Society Press, Los Alamitos (1988)
Safra, S.: Complexity of Automata on Infinite Objects. PhD thesis, The Weizmann Institue of Science, Rehovot, Israel (1989)
Michel, M.: Complementation is more difficult with automata on infinite words. Technical report, CNET Paris (1988)
Löding, C.: Optimal bounds for the transformation of omega-automata. In: Pandu Rangan, C., Raman, V., Ramanujam, R. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 97–109. Springer, Heidelberg (1999)
Kupferman, O., Vardi, M.Y.: Freedom, weakness, and determinism: From linear-time to branching-time. In: Proc. 13th IEEE Symposium on Logic in Computer Science, pp. 81–92 (1998)
Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–167. Springer, Heidelberg (2000)
Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)
Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: ICSE, pp. 411–420 (1999)
Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B: Formal Models and Semantics, pp. 995–1072. Elsevier Science Publishers, Amsterdam (1990)
Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (2000)
Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games, and state space reduction for Büchi automata. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 694–707. Springer, Heidelberg (2001)
Klein, J.: Linear time logic and deterministic omega-automata. Diploma thesis, Universität Bonn, Institut für Informatik (2005)
Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal on Computing 16, 973–989 (1987)
Kupferman, O., Vardi, M.Y.: Model checking of safety properties. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, Springer, Heidelberg (1999)
Latvala, T.: On model checking safety properties. Research Report A76, Helsinki University of Technology, Laboratory for Theoretical Computer Science, Espoo, Finland (2002)
Tasiran, S., Hojati, R., Brayton, R.K.: Language containment of non-deterministic ω-automata. In: Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987, pp. 261–277. Springer, Heidelberg (1995)
Tauriainen, H.: Automated testing of Büchi automata translators for linear temporal logic. Research report, Helsinki University of Technology, Laboratory for Theoretical Computer Science (2000)
Sebastiani, R., Tonetta, S.: More Deterministic vs. ”Smaller” Büchi Automata for Efficient LTL Model Checking. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 126–140. Springer, Heidelberg (2003)
Holzmann, G.J.: The Model Checker Spin. IEEE Trans. on Software Engineering 23, 279–295 (1997), Special issue on Formal Methods in Software Practice
Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: Proc. PSTV 1995. IFIP Conference Proceedings, vol. 38, pp. 3–18. Chapman and Hall, Boca Raton (1995)
Fritz, C.: Constructing Büchi automata from linear temporal logic using simulation relations for alternating Büchi automata. In: H. Ibarra, O., Dang, Z. (eds.) CIAA 2003. LNCS, vol. 2759, pp. 35–48. Springer, Heidelberg (2003)
Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)
Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondeterministic automata: New results and new proofs of the theorems of Rabin, McNaughton and Safra. Theoretical Computer Science 141, 69–107 (1995)
Althoff, C.S., Thomas, W., Wallmeier, N.: Observations on determinization of Büchi automata. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol. 3845, Springer, Heidelberg (2006)
Emerson, E.A., Sistla, A.P.: Deciding branching time logic. In: STOC 1984, pp. 14–24. ACM Press, New York (1984)
Krishnan, S.C., Puri, A., Brayton, R.K.: Deterministic ω Automata vis-a-vis Deterministic Buchi Automata. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS, vol. 834, pp. 378–386. Springer, Heidelberg (1994)
Löding, C.: Efficient minimization of deterministic weak omega-automata. Information Processing Letters 79, 105–109 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Klein, J., Baier, C. (2006). Experiments with Deterministic ω-Automata for Formulas of Linear Temporal Logic. In: Farré, J., Litovsky, I., Schmitz, S. (eds) Implementation and Application of Automata. CIAA 2005. Lecture Notes in Computer Science, vol 3845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11605157_17
Download citation
DOI: https://doi.org/10.1007/11605157_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31023-5
Online ISBN: 978-3-540-33097-4
eBook Packages: Computer ScienceComputer Science (R0)