[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Simple and Efficient Greedy Algorithms for Hamilton Cycles in Random Intersection Graphs

  • Conference paper
Algorithms and Computation (ISAAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3827))

Included in the following conference series:

  • 1400 Accesses

Abstract

In this work we consider the problem of finding Hamilton Cycles in graphs derived from the uniform random intersection graphs model G n, m, p . In particular, (a) for the case m = n α, α> 1 we give a result that allows us to apply (with the same probability of success) any algorithm that finds a Hamilton cycle with high probability in a G n, k graph (i.e. a graph chosen equiprobably form the space of all graphs with k edges), (b) we give an expected polynomial time algorithm for the case p = constant and \(m \leq \alpha {\sqrt{{n}\over {{\rm log}n}}}\) for some constant α, and (c) we show that the greedy approach still works well even in the case \(m = o({{n}\over{{\rm log}n}})\) and p just above the connectivity threshold of G n, m, p (found in [21]) by giving a greedy algorithm that finds a Hamilton cycle in those ranges of m, p with high probability.

This work has been partially supported by the IST Programme of the European Union under contract number 001907 (DELIS) and by the GSRT PENED 2003 ALGO.D.E.S. Project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Spencer, J.H.: The Probabilistic Method, 2nd edn. John Wiley & Sons, Inc., Chichester (2000)

    Book  MATH  Google Scholar 

  2. Beier, R., Vöcking, B.: Random Knapsack in Expected Polynomial Time. In: The Proc. of the 35th Annual ACM Symposium on Theory of Computing, pp. 232–241. ACM Press, New York (2003)

    Google Scholar 

  3. Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  4. Bollobás, B., Fenner, T.I., Frieze, A.M.: An algorithm for Finding Hamilton Paths and Cycles in Random Graphs. Combinatorica 7, 327–341

    Google Scholar 

  5. Coja-Oghlan, A., Taraz, A.: Colouring Random Graphs in Expected Polynomial Time. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 487–498. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Díaz, J., Penrose, M.D., Petit, J., Serna, M.: Approximating Layout Problems on Random Geometric Graphs. Journal of Algorithms 39, 78–116 (2001)

    Article  MATH  Google Scholar 

  7. Díaz, J., Petit, J., Serna, M.: A Random Graph Model for Optical Networks of Sensors. In: The 1st International Workshop on Efficient and Experimental Algorithms, WEA (2003); Also in the IEEE Transactions on Mobile Computing Journal 2(3), 186–196 (2003)

    Google Scholar 

  8. Díaz, J., Petit, J., Serna, M.: Random Geometric Problems on [0, 1]2. In: Rolim, J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 294–306. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  9. Efthymiou, H., Spirakis, P.: On the Existence of Hamiltonian Cycles in Random Intersection Graphs. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 690–701. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Fill, J.A., Sheinerman, E.R., Singer-Cohen, K.B.: Random Intersection Graphs when m = ω(n): An Equivalence Theorem Relating the Evolution of the G(n, m, p) and G(n, p) models, http://citeseer.nj.nec.com/fill98random.html

  11. Godehardt, E., Jaworski, J.: Two models of Random Intersection Graphs for Classification. In: Opitz, O., Schwaiger, M. (eds.) Studies in Classification, Data Analysis and Knowledge Organisation, pp. 67–82. Springer, Heidelberg (2002)

    Google Scholar 

  12. Gurevich, Y., Shelah, S.: Expected Computation Time for Hamiltonian Path Problem. SIAM Journal on Computing 16, 486–502 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Karoński, M., Scheinerman, E.R., Singer- Cohen, K.B.: On Random Intersection Graphs: The Subgraph Problem. Combinatorics, Probability and Computing journal 8, 131–159 (1999)

    Article  MATH  Google Scholar 

  14. Marczewski, E.: Sur deux propriétés des classes d’ ensembles. Fund. Math. 33, 303–307 (1945)

    MATH  MathSciNet  Google Scholar 

  15. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  16. Nikoletseas, S., Palem, K., Spirakis, P., Yung, M.: Short Vertex Disjoint Paths and Multiconnectivity in Random Graphs: Reliable Network Computing. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 247–262. Springer, Heidelberg (1994)

    Google Scholar 

  17. Nikoletseas, S., Raptopoulos, C., Spirakis, P.: The Existence and Efficient Construction of Large Independent Sets in General Random Intersection Graphs. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1029–1040. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Nikoletseas, S., Spirakis, P.: Expander Properties in Random Regular Graphs with Edge Faults. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 421–432. Springer, Heidelberg (1995)

    Google Scholar 

  19. Penrose, M.: Random Geometric Graphs. Oxford Studies in Probability (2003)

    Google Scholar 

  20. Raptopoulos, C., Spirakis, P.: Simple and Efficient Greedy Algorithms for Hamilton Cycles in Random Intersection Graphs. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 493–504. Springer, Heidelberg (2005), http://students.ceid.upatras.gr/~raptopox/fullpaper.ps

    Chapter  Google Scholar 

  21. Singer-Cohen, K.B.: Random Intersection Graphs. PhD thesis, John Hopkins University (1995)

    Google Scholar 

  22. Thomason, A.: A simple linear expected time algorithm for the Hamilton cycle problem. Discrete Math. 75, 373–379 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raptopoulos, C., Spirakis, P. (2005). Simple and Efficient Greedy Algorithms for Hamilton Cycles in Random Intersection Graphs. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_50

Download citation

  • DOI: https://doi.org/10.1007/11602613_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30935-2

  • Online ISBN: 978-3-540-32426-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics