[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A 1.75-Approximation Algorithm for Unsigned Translocation Distance

  • Conference paper
Algorithms and Computation (ISAAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3827))

Included in the following conference series:

Abstract

The translocation operation is one of the popular operations for genome rearrangement. In this paper, we present a 1.75-approxi- mation algorithm for computing unsigned translocation distance which improves upon the best known 2-approximation algorithm [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 115.00
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kececioglu, J., Ravi, R.: Of mice and men: Algorithms for evolutionary distances between genomes with translocation. In: 6th ACM-SIAM Symposium on Discrete Algorithms, pp. 604–613 (1995)

    Google Scholar 

  2. Hannenhalli, S.: Polynomial-time Algorithm for Computing Translocation Distance between Genomes. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp. 162–176. Springer, Heidelberg (1995)

    Google Scholar 

  3. Wang, L., Zhu, D., Liu, X., Ma, S.: An O(n 2) algorithm for signed translocation. Journal of Computer and System Sciences 70, 284–299 (2005)

    Article  MathSciNet  Google Scholar 

  4. Zhu, D., Wang, L.: On the Complexity of Unsigned Translocation Distance. Submited to theoretical computer science

    Google Scholar 

  5. Bergeron, A., Mixtacki, J., Stoye, J.: On sorting by translocation. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 615–629. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). In: STOC 1995, pp. 178–189 (1995)

    Google Scholar 

  7. Kaplan, H., Shamir, R., Tarjan, R.E.: Faster and simpler algorithm for sorting signed permutations by reversals. SIAM Journal on Computing 29(3), 880–892 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Caprara, A.: Sorting by reversals is difficult. In: Proceedings of the 1st Annual International Conference on Research Computational Molecular Biology, pp. 84–93 (1999)

    Google Scholar 

  9. Bafna, V., Pevzner, P.: Genome rearrangements and sorting by reversals. SIAM Journal on Computing 25(2), 272–289 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Christie, D.A.: A 3/2 Approximation Algorithm for Sorting by Reversals. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 244–252 (1998)

    Google Scholar 

  11. Lovász, L., Plummer, M.D.: Annals of Discrete Mathematics (29): Matching Theory. North-Holland, Amsterdam (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cui, Y., Wang, L., Zhu, D. (2005). A 1.75-Approximation Algorithm for Unsigned Translocation Distance. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_40

Download citation

  • DOI: https://doi.org/10.1007/11602613_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30935-2

  • Online ISBN: 978-3-540-32426-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics