Abstract
The translocation operation is one of the popular operations for genome rearrangement. In this paper, we present a 1.75-approxi- mation algorithm for computing unsigned translocation distance which improves upon the best known 2-approximation algorithm [1].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kececioglu, J., Ravi, R.: Of mice and men: Algorithms for evolutionary distances between genomes with translocation. In: 6th ACM-SIAM Symposium on Discrete Algorithms, pp. 604–613 (1995)
Hannenhalli, S.: Polynomial-time Algorithm for Computing Translocation Distance between Genomes. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp. 162–176. Springer, Heidelberg (1995)
Wang, L., Zhu, D., Liu, X., Ma, S.: An O(n 2) algorithm for signed translocation. Journal of Computer and System Sciences 70, 284–299 (2005)
Zhu, D., Wang, L.: On the Complexity of Unsigned Translocation Distance. Submited to theoretical computer science
Bergeron, A., Mixtacki, J., Stoye, J.: On sorting by translocation. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 615–629. Springer, Heidelberg (2005)
Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). In: STOC 1995, pp. 178–189 (1995)
Kaplan, H., Shamir, R., Tarjan, R.E.: Faster and simpler algorithm for sorting signed permutations by reversals. SIAM Journal on Computing 29(3), 880–892 (2000)
Caprara, A.: Sorting by reversals is difficult. In: Proceedings of the 1st Annual International Conference on Research Computational Molecular Biology, pp. 84–93 (1999)
Bafna, V., Pevzner, P.: Genome rearrangements and sorting by reversals. SIAM Journal on Computing 25(2), 272–289 (1996)
Christie, D.A.: A 3/2 Approximation Algorithm for Sorting by Reversals. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 244–252 (1998)
Lovász, L., Plummer, M.D.: Annals of Discrete Mathematics (29): Matching Theory. North-Holland, Amsterdam (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cui, Y., Wang, L., Zhu, D. (2005). A 1.75-Approximation Algorithm for Unsigned Translocation Distance. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_40
Download citation
DOI: https://doi.org/10.1007/11602613_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30935-2
Online ISBN: 978-3-540-32426-3
eBook Packages: Computer ScienceComputer Science (R0)