[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Number of Gaps in Binary Pictures

  • Conference paper
Advances in Visual Computing (ISVC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3804))

Included in the following conference series:

Abstract

This paper identifies the total number of gaps of object pixels in a binary picture, which solves an open problem in 2D digital geometry (or combinatorial topology of binary pictures). We obtain a formula for the total number of gaps as a function of the number of object pixels (grid squares), vertices (corners of grid squares), holes, connected components, and 2 × 2 squares of pixels. It can be used to test a binary picture (or just one region: e.g., a digital curve) for gap-freeness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brimkov, V.E., Andres, E., Barneva, R.P.: Object discretizations in higher dimensions. Pattern Recognition Letters 23, 623–636 (2002)

    Article  MATH  Google Scholar 

  2. Brimkov, V.E., Barneva, R.P., Nehlig, P.: Minimally thin discrete triangulations. In: Kaufman, A., Yagel, R., Chen, M. (eds.) Volume Graphics, ch. 3, pp. 51–70. Springer, Heidelberg (2000)

    Google Scholar 

  3. Brimkov, V.E., Klette, R.: Curves, hypersurfaces, and good pairs of adjacency relations. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 276–290. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Chen, L.: Discrete Surfaces and Manifolds. Scientific & Practical Computing (2004)

    Google Scholar 

  5. Cohen-Or, D., Kaufman, A.: 3D line voxelization and connectivity control. IEEE Computer Graphics and Applications 17(6), 80–87 (1997)

    Article  Google Scholar 

  6. Kaufman, A., Cohen, D., Yagel, R.: Volume graphics. IEEE Computer 26(7), 51–64 (1993)

    Google Scholar 

  7. Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  8. Kong, T.Y.: Digital topology. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 33–71. Kluwer, Boston (2001)

    Google Scholar 

  9. Menger, K.: Kurventheorie, Teubner, Leipzig, Germany (1932)

    Google Scholar 

  10. Mylopoulos, J.P., Pavlidis, T.: On the topological properties of quantized spaces. I. The notion of dimension. J. ACM 18, 239–246 (1971)

    Article  MathSciNet  Google Scholar 

  11. Pavlidis, T.: Algorithms for Graphics and Image Processing. Computer Science Press, Rockville (1982)

    Google Scholar 

  12. Rosenfeld, A.: Arcs and curves in digital pictures. Journal of the ACM 18, 81–87 (1973)

    Article  MathSciNet  Google Scholar 

  13. Rosenfeld, A.: Adjacency in digital pictures. Information and Control 26, 24–33 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  14. Urysohn, P.: Über die allgemeinen Cantorischen Kurven, Annual meeting, Deutsche Mathematiker Vereinigung, Marbourg, Germany (1923)

    Google Scholar 

  15. Voss, K.: Discrete Images, Objects, and Functions in Z n. Springer, Heidelberg (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brimkov, V.E., Maimone, A., Nordo, G., Barneva, R.P., Klette, R. (2005). The Number of Gaps in Binary Pictures. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds) Advances in Visual Computing. ISVC 2005. Lecture Notes in Computer Science, vol 3804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11595755_5

Download citation

  • DOI: https://doi.org/10.1007/11595755_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30750-1

  • Online ISBN: 978-3-540-32284-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics