Abstract
This paper identifies the total number of gaps of object pixels in a binary picture, which solves an open problem in 2D digital geometry (or combinatorial topology of binary pictures). We obtain a formula for the total number of gaps as a function of the number of object pixels (grid squares), vertices (corners of grid squares), holes, connected components, and 2 × 2 squares of pixels. It can be used to test a binary picture (or just one region: e.g., a digital curve) for gap-freeness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brimkov, V.E., Andres, E., Barneva, R.P.: Object discretizations in higher dimensions. Pattern Recognition Letters 23, 623–636 (2002)
Brimkov, V.E., Barneva, R.P., Nehlig, P.: Minimally thin discrete triangulations. In: Kaufman, A., Yagel, R., Chen, M. (eds.) Volume Graphics, ch. 3, pp. 51–70. Springer, Heidelberg (2000)
Brimkov, V.E., Klette, R.: Curves, hypersurfaces, and good pairs of adjacency relations. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 276–290. Springer, Heidelberg (2004)
Chen, L.: Discrete Surfaces and Manifolds. Scientific & Practical Computing (2004)
Cohen-Or, D., Kaufman, A.: 3D line voxelization and connectivity control. IEEE Computer Graphics and Applications 17(6), 80–87 (1997)
Kaufman, A., Cohen, D., Yagel, R.: Volume graphics. IEEE Computer 26(7), 51–64 (1993)
Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)
Kong, T.Y.: Digital topology. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 33–71. Kluwer, Boston (2001)
Menger, K.: Kurventheorie, Teubner, Leipzig, Germany (1932)
Mylopoulos, J.P., Pavlidis, T.: On the topological properties of quantized spaces. I. The notion of dimension. J. ACM 18, 239–246 (1971)
Pavlidis, T.: Algorithms for Graphics and Image Processing. Computer Science Press, Rockville (1982)
Rosenfeld, A.: Arcs and curves in digital pictures. Journal of the ACM 18, 81–87 (1973)
Rosenfeld, A.: Adjacency in digital pictures. Information and Control 26, 24–33 (1974)
Urysohn, P.: Über die allgemeinen Cantorischen Kurven, Annual meeting, Deutsche Mathematiker Vereinigung, Marbourg, Germany (1923)
Voss, K.: Discrete Images, Objects, and Functions in Z n. Springer, Heidelberg (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brimkov, V.E., Maimone, A., Nordo, G., Barneva, R.P., Klette, R. (2005). The Number of Gaps in Binary Pictures. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds) Advances in Visual Computing. ISVC 2005. Lecture Notes in Computer Science, vol 3804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11595755_5
Download citation
DOI: https://doi.org/10.1007/11595755_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30750-1
Online ISBN: 978-3-540-32284-9
eBook Packages: Computer ScienceComputer Science (R0)