[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Real-Time Crowd Density Estimation Using Images

  • Conference paper
Advances in Visual Computing (ISVC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3804))

Included in the following conference series:

Abstract

This paper presents a technique for real-time crowd density estimation based on textures of crowd images. In this technique, the current image from a sequence of input images is classified into a crowd density class. Then, the classification is corrected by a low-pass filter based on the crowd density classification of the last n images of the input sequence. The technique obtained 73.89% of correct classification in a real-time application on a sequence of 9892 crowd images. Distributed processing was used in order to obtain real-time performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Davies, A.C., Yin, J.H., Velastin, S.A.: Crowd Monitoring Using Image Processing. Electron. Commun. Eng. J. 7, 37–47 (1995)

    Article  Google Scholar 

  2. Regazzoni, C.S., Tesei, A.: Distributed Data Fusion for Real-Time Crowding Estimation. Signal Proc. 53, 47–63 (1996)

    Article  MATH  Google Scholar 

  3. Tesei, A., Regazzoni, C.S.: Local Density Evaluation and Tracking of Multiple Objects from Complex Image Sequences. In: Proc. 20th Intern. Conf. IECON, Bologna, Italy, vol. 2, pp. 744–748 (1994)

    Google Scholar 

  4. Lin, S.F., Chen, J.Y., Chao, H.X.: Estimation of Number of People in Crowd Scenes Using Perspective Transformation. IEEE Trans. Sys., Man, Cyber. A 31, 645–654 (2001)

    Article  Google Scholar 

  5. Cho, S.Y., Chow, T.W.S., Leung, C.T.: A Neural-Based Crowd Estimation by Hybrid Global Learning Algorithms. IEEE Trans. Sys., Man, Cyber. B 29, 535–541 (1999)

    Article  Google Scholar 

  6. Marana, A.N., Velastin, S.A., Costa, L.F., Lotufo, R.A.: Automatic Estimation of Crowd Density Using Texture. Safety Science 28, 165–175 (1998)

    Article  Google Scholar 

  7. Marana, A.N., Costa, L.F., Lotufo, R.A., Velastin, S.A.: Estimating Crowd Density with Minkowski Fractal Dimension. In: IEEE Proceedings of the International Conference on Acoustics, Speech and Signal Processing, vol. VI, pp. 3521–3524 (1999)

    Google Scholar 

  8. Marana, A.N., Verona, V.V.: Wavelet Packet Analysis for Crowd Density Estimation. In: Proc. IASTED Inter. Symposia on Applied Informatics, Innsbruck, Austria, pp. 535–540. Acta Press (2001)

    Google Scholar 

  9. Kohonen, T.: The Self-Organizing Map. Proceedings of the IEEE 78, 1464–1480 (1990)

    Article  Google Scholar 

  10. Haralick, R.M.: Statistical and Structural Approaches to Texture. Proceedings of the IEEE 67(5), 786–804 (1979)

    Article  Google Scholar 

  11. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderan, V.: PVM: Parallel Virtual Machine – A User’s Guide and Tutorial for Networked Parallel Computing. The MIT Press, Cambridge (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marana, A.N., Cavenaghi, M.A., Ulson, R.S., Drumond, F.L. (2005). Real-Time Crowd Density Estimation Using Images. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds) Advances in Visual Computing. ISVC 2005. Lecture Notes in Computer Science, vol 3804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11595755_43

Download citation

  • DOI: https://doi.org/10.1007/11595755_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30750-1

  • Online ISBN: 978-3-540-32284-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics