[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Building Statistical Atlas of White Matter Fiber Tract Based on Vector/Tensor Field Reconstruction in Diffusion Tensor MRI

  • Conference paper
Advances in Visual Computing (ISVC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3804))

Included in the following conference series:

Abstract

The diffusion tensor tractography has drawbacks such as low objectivity by interactive ROI setting and fiber-crossing. For coping with such problems, we are constructing a statistical atlas of white matter fiber tracts, in which probability density maps of tract structures are stored with diffusion tensor parameters on spatially normalized brain data. In building the atlas, our fiber tract modeling method plays a key role, which is based on a novel approach of vector/tensor field reconstruction avoiding fiber-crossings. In this abstract, we describe the modeling method, our statistical atlas, and the preliminary results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mori, S., Crain, B.J., et al.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45, 265–269 (1999)

    Article  Google Scholar 

  2. Conturo, T.E., Lori, N.F., Cul, T.S., et al.: Tracking neuronal fiber pathways in the living human brain. Proc. Natl. Acad. Sci. 96, 10422–10427 (1999)

    Article  Google Scholar 

  3. Basser, P.J., Pajevic, S., Pierpaoli, C., et al.: In Vivo Fiber Tractography Using DT-MRI Data. Magnetic Resonance in Medicine 44, 625–632 (2000)

    Article  Google Scholar 

  4. Mori, S., van Zijl, P.C.M.: Fiber Tracking: Principles and Strategies – A Technical Review. NMR Biomed. 15, 468–480 (2002)

    Article  Google Scholar 

  5. Jones, D.K., et al.: Spatial Normalization and Averaging of Diffusion Tensor MRI Data Sets. NeuroImage 17, 592–617 (2002)

    Article  Google Scholar 

  6. Park, H.J., et al.: Spatial normalization of diffusion tensor MRI using multiple channels. NeuroImage 20, 1995–2009 (2003)

    Article  Google Scholar 

  7. Wakana, S., et al.: Fiber Tract–based Atlas of Human White Matter Anatomy. Radiology 230, 77–87 (2004)

    Article  Google Scholar 

  8. Corouge, I., et al.: A Statistical Shape Model of Individual Fiber Tracts Extracted from Diffusion Tensor MRI. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 671–679. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Masutani, Y., Aoki, S., et al.: RBF-based reconstruction of fiber orientation vector field for white matter fiber tract modeling. In: Proc. of ISMRM 2004 (2004)

    Google Scholar 

  10. Globus, A., et al.: A tool for visualizing the topology of three-dimensional vector fields. In: Proc. of the 2nd conference on Visualization 1991, pp. 33–40 (1991)

    Google Scholar 

  11. Helman, J.L., Hesselink, L.: Visualization of Vector Field Topology in Fluid Flows. IEEE CG&A 11(3), 36–46 (1991)

    Google Scholar 

  12. Ashburner, J., Friston, K.J.: Nonlinear spatial normalization using basis functions. Hum. Brain Mapp. 7(4), 254–266 (1999)

    Article  Google Scholar 

  13. Taguchi, G., Jugulum, R.: The Mahalanobis-Taguchi Strategy: A Pattern Technology System. John Wiley & Sons, Chichester (2002)

    Book  Google Scholar 

  14. Kamada, K., Morita, A., Masutani, Y., et al.: Combined utilization of tractography-integrated functional neuronavigation and direct fiber stimulation. Journal of Neurosurgery 202(4), 664–672 (2005)

    Article  Google Scholar 

  15. Maruyama, K., Kamada, K., Aoki, S., et al.: Integration of three-dimensional corticospinal tractography in treatment planning of gamma-knife radiosurgery. Journal of Neurosurgery 202(4), 673–677 (2005)

    Article  Google Scholar 

  16. Jones, D.K., Horsfield, M.A., Simmons, A.: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magnetic Resonance in Medicine 42, 515–525 (1999)

    Article  Google Scholar 

  17. http://www.ut-radiology.umin.jp/people/masutani/dTV.htm

  18. Hesselink, L., et al.: The Topology of Symmetric, Second-Order 3D Tensor Fields. IEEE trans. visualization and CG 3(1), 1–11 (1997)

    Article  Google Scholar 

  19. Donnell, L.O., Grimson, W.E.L., Westin, C.F.: Interface Detection in Diffusion Tensor MRI. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 360–367. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Brun, A., Knutsson, H., et al.: Clustering Fiber Traces Using Normalized Cuts. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 368–375. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Masutani, Y. et al. (2005). Building Statistical Atlas of White Matter Fiber Tract Based on Vector/Tensor Field Reconstruction in Diffusion Tensor MRI. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds) Advances in Visual Computing. ISVC 2005. Lecture Notes in Computer Science, vol 3804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11595755_11

Download citation

  • DOI: https://doi.org/10.1007/11595755_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30750-1

  • Online ISBN: 978-3-540-32284-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics