Abstract
A computational approach to the perception of illusory contours is introduced. The approach is based on the tensor voting technique and applied to several real and synthetic images. Special interest is given to the design of the communication pattern for spatial contour integration, called voting field.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Anderson, B.L., Singh, M., Fleming, R.W.: The interpolation of object and surface structure. Cognitive Psychology 44, 148–190 (2002)
Ehrenstein, W.H., Spillmann, L., Sarris, V.: Gestalt issues in modern neuroscience. Axiomathes 13(3), 433–458 (2003)
Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Englewood Cliffs (2002)
Guy, G., Medioni, G.: Inferring global perceptual contours from local features. International Journal of Computer Vision 20(1-2), 113–133 (1996)
Hansen, T.: A neural model of early vision: Contrast, contours, corners and surfaces. PhD thesis, Universität Ulm (2003)
Hansen, T., Neumann, H.: Neural mechanisms for representing surface and contour features. In: Emergent Neural Computational Architectures Based on Neuroscience - Towards Neuroscience-Inspired Computing, pp. 139–153. Springer, Heidelberg (2001)
Heitger, F., von der Heydt, R.: A computational model of neural contour processing: Figure-ground segregation and illusory contours. In: International Conference on Computer Vision, pp. 32–40 (1993)
Kanizsa, G. (ed.): Organization in Vision. Praeger, Westport (1979)
Kellman, P.J., Guttman, S.E., Wickens, T.D.: Geometric and neural models of object perception. In: Shipley, T.F., Kellman, P.J. (eds.) From fragments to objects: Segmentation and grouping in vision. Elsevier Science, Oxford (2001)
Koffka, K.: Principles of Gestalt psychology. Harcourt Brace, New York (1935)
Marr, D.: Vision: a computational investigation into the human representation and processing of visual information. W. H. Freeman, San Francisco (1982)
Massad, A., Babos, M., Mertsching, B.: Application of the tensor voting technique for perceptual grouping to grey-level images. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 306–313. Springer, Heidelberg (2002)
Massad, A., Babos, M., Mertsching, B.: Perceptual grouping in grey level images by combination of gabor filtering and tensor voting. In: Kasturi, R., Laurendeau, D., Suen, C. (eds.) ICPR, vol. 2, pp. 677–680 (2002)
Massad, A., Babos, M., Mertsching, B.: Application of the tensor voting technique for perceptual grouping to grey-level images: Quantitative evaluation. In: Intl. Symposium on Image and Signal Processing and Analysis (2003)
Massad, A., Medioni, G.: 2-D Shape Decomposition into Overlapping Parts. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 398–409. Springer, Heidelberg (2001)
Massad, A., Mertsching, B.: Segmentation of Spontaneously Splitting Figures into Overlapping Parts. In: Radig, B., Florczyk, S. (eds.) DAGM 2001. LNCS, vol. 2191, pp. 25–31. Springer, Heidelberg (2001)
Medioni, G., Lee, M.-S., Tang, C.-K.: A Computational Framework for Segmentation and Grouping. Elsevier Science, Amsterdam (2000)
Mokhtarian, F., Suomela, R.: Robust image corner detection through curvature scale space. IEEE Trans. Pattern Anal. Mach. Intell. 20(12), 1376–1381 (1998)
Neumann, H., Mingolla, E.: Computational neural models of spatial integration in perceptual grouping. In: Shipley, T., Kellman, P. (eds.) From fragments to units: Segmentation and grouping in vision, pp. 353–400. Elsevier Science, Oxford (2001)
Nieder, A.: Seeing more than meets the eye: processing of illusory contours in animals. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology 188(4), 249–260 (2002)
Parent, P., Zucker, S.: Trace inference, curvature consistency, and curve detection. IEEE Trans. Pattern Anal. Mach. Intell. 11(8), 823–839 (1989)
Peterhans, E., Heitger, F.: Simulation of neuronal responses defining depth order and contrast polarity at illusory contours in monkey area v2. Journal of Computational Neuroscience 10(2), 195–211 (2001)
Ross, W.D., Grossberg, S., Mingolla, E.: Visual cortical mechanisms of perceptual grouping: interacting layers, networks, columns, and maps. Neural Netw. 13(6), 571–588 (2000)
Schumann, F.: Beiträge zur Analyse der Gesichtswahrnehmungen. Erste Abhandlung. Einige Beobachtungen über die Zusammenfassung von Gesichtseindrücken zu Einheiten. Zeitschrift für Psychologie und Physiologie der Sinnesorgane 23, 1–32 (1900); English translation by A. Hogg (1987) in The perception of Illusory Contours, Petry, S., Meyer, G.E. (eds.), pp. 40–49. Springer, New York (1987)
Wertheimer, M.: Untersuchungen zur Lehre von der Gestalt II. Psychologische Forschung 4, 301–350 (1923)
Williams, L.R., Thornber, K.K.: A comparison of measures for detecting natural shapes in cluttered backgrounds. International Journal of Computer Vision 34(2/3), 81–96 (2000)
Ziou, D., Tabbone, S.: Edge detection techniques: an overview. International Journal on Pattern Recognition and Image Analysis 8(4), 537–559 (1998)
Zweck, J.W., Williams, L.R.: Euclidean group invariant computation of stochastic completion fields using shiftable-twistable functions. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 100–116. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hund, M., Mertsching, B. (2005). A Computational Approach to Illusory Contour Perception Based on the Tensor Voting Technique. In: Sanfeliu, A., Cortés, M.L. (eds) Progress in Pattern Recognition, Image Analysis and Applications. CIARP 2005. Lecture Notes in Computer Science, vol 3773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11578079_8
Download citation
DOI: https://doi.org/10.1007/11578079_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29850-2
Online ISBN: 978-3-540-32242-9
eBook Packages: Computer ScienceComputer Science (R0)