[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Shape Based Segmentation of Anatomical Structures in Magnetic Resonance Images

  • Conference paper
Computer Vision for Biomedical Image Applications (CVBIA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3765))

Abstract

Standard image based segmentation approaches perform poorly when there is little or no contrast along boundaries of different regions. In such cases, segmentation is largely performed manually using prior knowledge of the shape and relative location of the underlying structures combined with partially discernible boundaries. We present an automated approach guided by covariant shape deformations of neighboring structures, which is an additional source of prior information. Captured by a shape atlas, these deformations are transformed into a statistical model using the logistic function. Structure boundaries, anatomical labels, and image inhomogeneities are estimated simultaneously within an Expectation-Maximization formulation of the maximum a posteriori probability estimation problem. We demonstrate the approach on 20 brain magnetic resonance images showing superior performance, particularly in cases where purely image based methods fail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shenton, M., Kikinis, R., Jolesz, F., Pollak, S., LeMay, M., Wible, C., Hokama, H., Martin, J., Metcalf, D., Coleman, M., McCarley, R.: Left temporal lobe abnormalities in schizophrenia and thought disorder: A quantitative MRI study. New England Journal of Medicine 327, 604–612 (1992)

    Article  Google Scholar 

  2. Kikinis, R., Shenton, M.E., Gering, G., Martin, J., Anderson, M., Metcalf, D., Guttmann, C., McCarley, R.W., Lorensen, W., Line, H., Jolesz, F.A.: Routine quantitative analysis of brain and cerebrospinal fluid spaces with MR imaging. MRI 2(6), 619–629 (1992)

    Google Scholar 

  3. Pohl, K., Fisher, J., Levitt, J., Shenton, M., Kikinis, R., Grimson, W., Wells, W.: A unifying approach to registration, segmentation, and intensity correction. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 310–318. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Collins, D., Zijdenbos, A., Barre, W., Evans, A.: Animal+insect: Improved cortical structure segmentation. In: Kuba, A., Sámal, M., Todd-Pokropek, A. (eds.) IPMI 1999. LNCS, vol. 1613, p. 210. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Leventon, M., Grimson, W., Faugeras, O.: Statistical shape influence in geodesic active contours. In: CVPR, pp. 1316–1323 (2000)

    Google Scholar 

  6. Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Sègonne, F., Salat, D., Busa, E., Seidman, L., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., Dale, A.: Automatically parcellating the human cerebral cortex. Cerebral Cortex 14, 11–22 (2004)

    Article  Google Scholar 

  7. Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W., Willsky, A.: A shape-based approach to the segmentation of medical imagery using level sets. TMI 22(2), 137–154 (2003)

    Google Scholar 

  8. Leventon, M.E.: Statistical Models in Medical Image Analysis. PhD thesis, Massachusetts Institute of Technology (2000)

    Google Scholar 

  9. Yang, J., Duncan, J.S.: Joint prior models of neighboring objects for 3D image segmentation. In: CVPR, pp. 314–319 (2004)

    Google Scholar 

  10. Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: CVPR, pp. 22–26 (1985)

    Google Scholar 

  11. Wells, W., Grimson, W., Kikinis, R., Jolesz, F.: Adaptive segmentation of MRI data. TMI 15, 429–442 (1996)

    Google Scholar 

  12. Wyatt, P.P., Noble, J.A.: MAP MRF joint segmentation and registration. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 580–587. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Cootes, T., Hill, A., Taylor, C., Haslam, J.: The use of active shape models for locating structures in medical imaging. Imaging and Vision Computing 12(6), 335–366 (1994)

    Google Scholar 

  14. Van Leemput, K., Maes, F., Vanermeulen, D., Suetens, P.: Automated model-based bias field correction of MR images of the brain. TMI 18(10), 885–895 (1999)

    Google Scholar 

  15. Pohl, K., Bouix, S., Kikinis, R., Grimson, W.: Anatomical guided segmentation with non-stationary tissue class distributions in an expectation-maximization framework. In: ISBI, pp. 81–84 (2004)

    Google Scholar 

  16. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. John Wiley and Sons, Inc., Chichester (1997)

    MATH  Google Scholar 

  17. Yang, J., Staib, L.H., Duncan, J.S.: Neighbor-constrained segmentation with level set based 3D deformable models. TMI 23(8), 940–948 (2004)

    Google Scholar 

  18. Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  19. Dice, L.R.: Measure of the amount of ecological association between species. Ecology 26, 297–302 (1945)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pohl, K.M., Fisher, J., Kikinis, R., Grimson, W.E.L., Wells, W.M. (2005). Shape Based Segmentation of Anatomical Structures in Magnetic Resonance Images. In: Liu, Y., Jiang, T., Zhang, C. (eds) Computer Vision for Biomedical Image Applications. CVBIA 2005. Lecture Notes in Computer Science, vol 3765. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11569541_49

Download citation

  • DOI: https://doi.org/10.1007/11569541_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29411-5

  • Online ISBN: 978-3-540-32125-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics