Abstract
Standard image based segmentation approaches perform poorly when there is little or no contrast along boundaries of different regions. In such cases, segmentation is largely performed manually using prior knowledge of the shape and relative location of the underlying structures combined with partially discernible boundaries. We present an automated approach guided by covariant shape deformations of neighboring structures, which is an additional source of prior information. Captured by a shape atlas, these deformations are transformed into a statistical model using the logistic function. Structure boundaries, anatomical labels, and image inhomogeneities are estimated simultaneously within an Expectation-Maximization formulation of the maximum a posteriori probability estimation problem. We demonstrate the approach on 20 brain magnetic resonance images showing superior performance, particularly in cases where purely image based methods fail.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shenton, M., Kikinis, R., Jolesz, F., Pollak, S., LeMay, M., Wible, C., Hokama, H., Martin, J., Metcalf, D., Coleman, M., McCarley, R.: Left temporal lobe abnormalities in schizophrenia and thought disorder: A quantitative MRI study. New England Journal of Medicine 327, 604–612 (1992)
Kikinis, R., Shenton, M.E., Gering, G., Martin, J., Anderson, M., Metcalf, D., Guttmann, C., McCarley, R.W., Lorensen, W., Line, H., Jolesz, F.A.: Routine quantitative analysis of brain and cerebrospinal fluid spaces with MR imaging. MRI 2(6), 619–629 (1992)
Pohl, K., Fisher, J., Levitt, J., Shenton, M., Kikinis, R., Grimson, W., Wells, W.: A unifying approach to registration, segmentation, and intensity correction. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 310–318. Springer, Heidelberg (2005)
Collins, D., Zijdenbos, A., Barre, W., Evans, A.: Animal+insect: Improved cortical structure segmentation. In: Kuba, A., Sámal, M., Todd-Pokropek, A. (eds.) IPMI 1999. LNCS, vol. 1613, p. 210. Springer, Heidelberg (1999)
Leventon, M., Grimson, W., Faugeras, O.: Statistical shape influence in geodesic active contours. In: CVPR, pp. 1316–1323 (2000)
Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Sègonne, F., Salat, D., Busa, E., Seidman, L., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., Dale, A.: Automatically parcellating the human cerebral cortex. Cerebral Cortex 14, 11–22 (2004)
Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W., Willsky, A.: A shape-based approach to the segmentation of medical imagery using level sets. TMI 22(2), 137–154 (2003)
Leventon, M.E.: Statistical Models in Medical Image Analysis. PhD thesis, Massachusetts Institute of Technology (2000)
Yang, J., Duncan, J.S.: Joint prior models of neighboring objects for 3D image segmentation. In: CVPR, pp. 314–319 (2004)
Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: CVPR, pp. 22–26 (1985)
Wells, W., Grimson, W., Kikinis, R., Jolesz, F.: Adaptive segmentation of MRI data. TMI 15, 429–442 (1996)
Wyatt, P.P., Noble, J.A.: MAP MRF joint segmentation and registration. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 580–587. Springer, Heidelberg (2002)
Cootes, T., Hill, A., Taylor, C., Haslam, J.: The use of active shape models for locating structures in medical imaging. Imaging and Vision Computing 12(6), 335–366 (1994)
Van Leemput, K., Maes, F., Vanermeulen, D., Suetens, P.: Automated model-based bias field correction of MR images of the brain. TMI 18(10), 885–895 (1999)
Pohl, K., Bouix, S., Kikinis, R., Grimson, W.: Anatomical guided segmentation with non-stationary tissue class distributions in an expectation-maximization framework. In: ISBI, pp. 81–84 (2004)
McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. John Wiley and Sons, Inc., Chichester (1997)
Yang, J., Staib, L.H., Duncan, J.S.: Neighbor-constrained segmentation with level set based 3D deformable models. TMI 23(8), 940–948 (2004)
Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)
Dice, L.R.: Measure of the amount of ecological association between species. Ecology 26, 297–302 (1945)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pohl, K.M., Fisher, J., Kikinis, R., Grimson, W.E.L., Wells, W.M. (2005). Shape Based Segmentation of Anatomical Structures in Magnetic Resonance Images. In: Liu, Y., Jiang, T., Zhang, C. (eds) Computer Vision for Biomedical Image Applications. CVBIA 2005. Lecture Notes in Computer Science, vol 3765. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11569541_49
Download citation
DOI: https://doi.org/10.1007/11569541_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29411-5
Online ISBN: 978-3-540-32125-5
eBook Packages: Computer ScienceComputer Science (R0)