Abstract
How visual attention is shared between objects moving in an observed scene is a key issue to situate vision in the world. In this note, we discuss how a computational model taking into account such issue, can be designed in a bayesian framework. To validate the model, experiments with eye-tracked human subjects are presented and discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hayhoe, M.M., Ballard, D.H., Bensinger, D.: Task constraints in visual working memory. Vision Research 38, 125–137 (1998)
Pylyshyn, Z.: Situating vision in the world. Trends in Cognitive Sciences 4, 197–207 (2000)
Zeki, S.: A Vision of the Brain. Backwell Science, Oxford (1993)
Goodale, M., Humphrey, G.: The objects of action and perception. Cognition 67, 181–207 (1998)
Krauzlis, R., Stone, L.: Tracking with the minds eye. Trends Neuroscience 22, 544–550 (1999)
Itti, L., Koch, C.: Computational modelling of visual attention. Nature Reviews - Neuroscience 2, 1–11 (2001)
Lee, T.S., Mumford, D.: Hierarchical bayesian inference in the visual cortex. J. Opt. Soc. Am. A 20, 1434–1448 (2003)
Anandan, P.: A computational framework and an algorithm for the measurment of visual motion. Int. Journal of Computer Vision 2, 283–310 (1989)
Boccignone, G., Ferraro, M., Napoletano, P.: Diffused expectation maximisation for image segmentation. Electronics Letters 40, 1107–1108 (2004)
Boccignone, G., Caggiano, V., Di Fiore, G., Marcelli, A., Napoletano, P.: Attentive video analysis using spatial-based and object-based cues. In: Proceedings CAMP 2005. IEEE Computer Soc. Press, Los Alamitos (2005)
Vasconcelos, N., Lippman, A.: Empirical bayesian motion segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 23, 217–220 (2001)
Weiss, Y., Adelson, E.: A unified mixture framework for motion segmentation: incorporating spatial coherence and estimating the number of models. In: Proc. IEEE Conf. CVPR 1996, pp. 321–326. IEEE Computer Soc. Press, Los Alamitos (1996)
Isard, M., Blake, A.: Condensation-conditional density propagation for visual tracking. International Journal of Computer Vision 29, 5–28 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Boccignone, G., Caggiano, V., Di Fiore, G., Marcelli, A., Napoletano, P. (2005). A Bayesian Approach to Situated Vision. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds) Brain, Vision, and Artificial Intelligence. BVAI 2005. Lecture Notes in Computer Science, vol 3704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11565123_35
Download citation
DOI: https://doi.org/10.1007/11565123_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29282-1
Online ISBN: 978-3-540-32029-6
eBook Packages: Computer ScienceComputer Science (R0)