[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Improved Multi-stage (t, n)-Threshold Secret Sharing Scheme

  • Conference paper
Advances in Web-Age Information Management (WAIM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3739))

Included in the following conference series:

Abstract

Recently, Chang et al. proposed a multi-stage (t, n)-threshold secret sharing scheme based on the one-way function. For k secrets shared among n participants, each participant has to keep one secret shadow; but there are a total of kn public values. In this paper, a new multi-stage (t, n)-threshold secret sharing scheme was proposed, which is an alternative implementation of Chang etal.’s scheme. Each participant needs to keep only one secret shadow in sharing multiple secrets without updating each participant’s secret shadow. For k secrets shared among n participants, there are only a total of k(n-t+1) public values. Analyses show that the proposed scheme is a computationally secure and efficient scheme. The implementation of the proposed scheme becomes very attractive, especially when the threshold value t is very close to the number of participants n.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chang, T.-Y., Yang, C.-C., Hwang, M.-S.: Threshold Untraceable Signature for Group communications. IEE Proceedings-Communications 151, 179–184 (2004)

    Article  MathSciNet  Google Scholar 

  2. Hwang, M.-S., Lee, C.-C., Chang, T.-Y.: Broadcasting Cryptosystem in Computer Networks Using Geometric Properties of Lines. Journal of Information Science and Engineering 18, 373–378 (2002)

    Google Scholar 

  3. Crescenzo, G.D.: Sharing One Secret vs. Sharing Many Secret. Theoretical Computer Science 295, 123–140 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Shamir, A.: How to Share a Secret. Communications of the ACM 22, 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blakley, G.: Safeguarding Cryptographic Key. In: Smith, M., Zanca, J.T. (eds.) Proc. AFIPS 1979 Natl. Conf., pp. 313–317. AFIPS Press, New York (1979)

    Google Scholar 

  6. Chien, H.Y., Jan, J.K., Tseng, Y.M.: A Practical (t, n) Multi-secret Sharing Scheme. IEICE Transactions on Fundamentals E83-A (12), 2762–2765 (2000)

    Google Scholar 

  7. Pang, L.J., Wang, Y.M.: A New (t,n) Multi-secret Sharing Scheme Based on Shamir’s Secret Sharing. Submitted to Applied Mathematics and Computation. Accepted and in Press, Corrected Proof, Available online November 5 (2004)

    Google Scholar 

  8. Yang, C.C., Chang, T.Y., Hwang, M.S.: A (t, n) Multi-secret Sharing Scheme. Applied Mathematics and Computation 151, 483–490 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. He, J., Dawson, E.: Multistage Secret Sharing Based on One-way Function. Electronics Letters 30, 1591–1592 (1994)

    Article  Google Scholar 

  10. Harn, L.: Comment: Multistage Secret Sharing Based on One-way Function. Electronics Letters 31, 262 (1995)

    Article  Google Scholar 

  11. Chang, T.Y., Hwang, M.S., Yang, W.P.: A new Multi-stage Secret Sharing Scheme Using One-way Function. ACM SIGOPS Operating Systems 39, 48–55 (2005)

    Article  Google Scholar 

  12. Jackson, M.-A., Marin, K.M., O’Keefe, C.M.: On Sharing Many Secrets. In: Pieprzyk, J., Safavi-Naini, R. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 42–54. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  13. Crescenzo, G.D.L.: Sharing One Secret vs. Sharing Many Secrets: Tight Bounds on the Average Improvement Ratio. In: Proc. of 11th Annu. ACM-SIAM Symp. On Discrete Algorithms. Society for Industrial and Applied Mathematics, San Francisco, California, pp. 273–274 (2000)

    Google Scholar 

  14. ElGamal, T.: A Public-key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE Transactions on Information Theory IT-31, 469–472 (1985)

    Google Scholar 

  15. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and Public Key Cryptosystems. Communications of the ACM  21, 120–126 (1978)

    Google Scholar 

  16. Wu, T.C., Wu, T.S.: Cheating Detection and Cheater Identification in Secret Sharing Schemes. IEE Proceedings-Computers and Digital Techniques 142, 367–369 (1995)

    Article  Google Scholar 

  17. Tan, K.J., Zhu, H.W., Gu, S.J.: Cheater Identification in (t, n) Threshold Scheme. Computer Communications 22, 762–765 (1999)

    Article  Google Scholar 

  18. Chang, C.C., Hwang, R.J.: Efficient Cheater Identification Method for Threshold Schemes. IEE Proceedings-Computers and Digital Techniques 144, 23–27 (1997)

    Article  MATH  Google Scholar 

  19. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  20. Knuth, D.: The Art of Computer Programming. Seminumerical Algorithms, vol. 2. Addison-Wesley, Reading (1969)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, HX., Cheng, CT., Pang, LJ. (2005). An Improved Multi-stage (t, n)-Threshold Secret Sharing Scheme. In: Fan, W., Wu, Z., Yang, J. (eds) Advances in Web-Age Information Management. WAIM 2005. Lecture Notes in Computer Science, vol 3739. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11563952_24

Download citation

  • DOI: https://doi.org/10.1007/11563952_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29227-2

  • Online ISBN: 978-3-540-32087-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics