[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Query Transitive Translation Using IR Score for Indonesian-Japanese CLIR

  • Conference paper
Information Retrieval Technology (AIRS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3689))

Included in the following conference series:

  • 1032 Accesses

Abstract

We combined the mutual information score and TF × IDF score (IR score) in order to select the best keyword translation in our transitive translation. The transitive translation used bilingual dictionaries to translate Indonesian query into Japanese keywords. The Japanese keywords are then used as the input to retrieve Japanese documents. The keyword selection is done in two steps. The first step is to sort translation candidates according to their mutual information scores calculated from a monolingual target language corpus. The second step is to select the best candidate set among 5 top mutual information scores based on their TF × IDF scores. The experiment against NTCIR-3 Web Retrieval Task data shows that the keyword selection based on this combination achieved higher IR score than a direct translation method using original Indonesian-Japanese dictionary and also higher than the machine translation result using Kataku (Indonesian-English) and Babelfish (English-Japanese) engines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Babelfish English-Japanese Online Machine Translation (April 2004), http://www.altavista.com/babelfish/

  2. Ballesteros, L.A.: Cross-Language Retrieval via Transitive Translation. In: Advances in Information Retrieval, pp. 203–230. Kluwer Academic Publisher, Dordrecht (2000)

    Google Scholar 

  3. Ballesteros, L.A., Bruce Croft, W.: Resolving Ambiguity for Cross-Language Retrieval. In: ACM Sigir (1998)

    Google Scholar 

  4. Chasen (February 2004), http://chasen.naist.jp/hiki/ChaSen/

  5. Eijirou, Alc Co. (2002), http://www.alc.co.jp/

  6. Excite English-Japanese Online Machine Translation (April 2004), http://www.excite.co.jp/world/

  7. Fox, C.: A Stop List for General Text. ACM Sigir 24(2), 19–21 (Fall 1989/Winter 1990)

    Google Scholar 

  8. Fujii, A., Ishikawa, T.: NTCIR-3 Cross-Language IR Experiments at ULIS. In: Proc. Of the Third NTCIR Workshop (2003)

    Google Scholar 

  9. Gao, J., Nie, J.-Y., Xun, E., Zhang, J., Zhou, M., Huang, C.: Improving Query Translation for Cross-Language Information Retrieval using Statistical Model. In: Proc. Sigir (2001)

    Google Scholar 

  10. Gollins, T., Sanderson, M.: Improving Cross Language Information Retrieval with Triangulated Translation. In: Proc. Sigir (2001)

    Google Scholar 

  11. Indonesian-English Online Machine Translation (May 2004), http://www.toggletext.com/kataku_trial.php

  12. Indonesian-Japanese Online Dictionary (May 2004), http://ml.ryu.titech.ac.jp/~indonesia/tokodai/dokumen/kamusjpina.pdf

  13. KEBI, Kamus Elektronik Bahasa Indonesia (February 2004), http://nlp.aia.bppt.go.id/kebi/

  14. Kishida, K., Kando, N.: Two-Stage Refinement of Query Translation in a Pivot Language Approach to Cross-Lingual Information Retrieval: An Experiment at CLEF 2003. In: Peters, C., Gonzalo, J., Braschler, M., Kluck, M. (eds.) CLEF 2003. LNCS, vol. 3237, pp. 253–262. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Mainichi Shinbun CD-Rom data sets (1993-1995); Nichigai Associates Co. (1994-1996)

    Google Scholar 

  16. Qu, Y., Grefenstette, G., Evans, D.A.: Resolving Translation Ambiguity using Monolingual Corpora. In: Peters, C., Braschler, M., Gonzalo, J. (eds.) CLEF 2002. LNCS, vol. 2785, pp. 223–241. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. van Rijsbergen, D.J.: Information Retrieval, 2nd edn. Butterworths, London (1979)

    Google Scholar 

  18. WordNet (February 2004), http://wordnet.princeton.edu/

  19. Zu, G., Ohyama, W., Wakabayashi, T., Kimura, F.: Automatic Text Classification Techniques. IEEJ Trans EIS 124(3) (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Purwarianti, A., Tsuchiya, M., Nakagawa, S. (2005). Query Transitive Translation Using IR Score for Indonesian-Japanese CLIR. In: Lee, G.G., Yamada, A., Meng, H., Myaeng, S.H. (eds) Information Retrieval Technology. AIRS 2005. Lecture Notes in Computer Science, vol 3689. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11562382_51

Download citation

  • DOI: https://doi.org/10.1007/11562382_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29186-2

  • Online ISBN: 978-3-540-32001-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics