[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Engineering Planar Separator Algorithms

  • Conference paper
Algorithms – ESA 2005 (ESA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3669))

Included in the following conference series:

Abstract

We consider classical linear-time planar separator algorithms, determining for a given planar graph a small subset of the nodes whose removal separates the graph into two components of similar size. These algorithms are based upon Planar Separator Theorems, which guarantee separators of size \(O(\sqrt{n})\) and remaining components of size less than 2n/3. In this work, we present a comprehensive experimental study of the algorithms applied to a large variety of graphs, where the main goal is to find separators that do not only satisfy upper bounds but also possess other desirable qualities with respect to separator size and component balance. We propose the usage of fundamental cycles, whose size is at most twice the diameter of the graph, as planar separators: For graphs of small diameter the guaranteed bound is better than the \(O(\sqrt{n})\) bounds, and it turns out that this simple strategy almost always outperforms the other algorithms, even for graphs with large diameter.

This work was partially supported by the IST Programme of EC under contract no. IST-2002-001907 (DELIS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal on Applied Mathematics 36, 177–189 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  2. Djidjev, H.N.: On the problem of partitioning planar graphs. SIAM Journal on Algebraic and Discrete Methods 3, 229–240 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alon, N., Seymour, P., Thomas, R.: Planar separators. SIAM Journal on Discrete Mathematics 7, 184–193 (2004)

    Article  MathSciNet  Google Scholar 

  4. Djidjev, H.N., Venkatesan, S.M.: Reduced constants for simple cycle graph separation. Acta Informatica 34, 231–243 (1997)

    Article  MathSciNet  Google Scholar 

  5. Aleksandrov, L., Djidjev, H.N., Guo, H., Maheshwari, A.: Partitioning planar graphs with costs and weights. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 98–110. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Holzer, M., Prasinos, G., Schulz, F., Wagner, D., Zaroliagis, C.: Engineering planar separator algorithms. Technical Report 2005-20, Fakultät Informatik, Universität Karlsruhe, TH (2005), http://www.ubka.uni-karlsruhe.de/vvv/ira/2005/20/20.pdf

  7. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. Journal of the ACM 46, 787–832 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Mehlhorn, K.: Data Structures and Algorithms 1, 2, and 3. Springer, Heidelberg (1984)

    Google Scholar 

  9. Kozen, D.: The Design and Analysis of Algorithms. Springer, Heidelberg (1992)

    Google Scholar 

  10. Ashcraft, C., Liu, J.W.H.: Applications of the Dulmage-Mendelsohn decomposition and network flow to graph bisection improvement. Technical Report CS-96-05, Dept. of Computer Science, York University, North York, Ontario, Canada (1996), http://www.cs.yorku.ca/techreports/1996/CS-96-05.html

  11. Bourke, P.: Sphere generation (1992), http://astronomy.swin.edu.au/~pbourke/modelling/sphere/

  12. Näher, S., Mehlhorn, K.: The LEDA Platform of Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999), http://www.algorithmic-solutions.com

    Google Scholar 

  13. Diekmann, R.: (Graph Partitioning Graph Collection), http://wwwcs.upb.de/fachbereich/AG/monien/RESEARCH/PART/graphs.html

  14. BARD (Bay Area Regional Database), http://bard.wr.usgs.gov

  15. ESRI (Environmental Systems Research Institute), http://www.esri.com

  16. Karypis, G.: (MeTiS), http://www-users.cs.umn.edu/~karypis/metis

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holzer, M., Prasinos, G., Schulz, F., Wagner, D., Zaroliagis, C. (2005). Engineering Planar Separator Algorithms. In: Brodal, G.S., Leonardi, S. (eds) Algorithms – ESA 2005. ESA 2005. Lecture Notes in Computer Science, vol 3669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11561071_56

Download citation

  • DOI: https://doi.org/10.1007/11561071_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29118-3

  • Online ISBN: 978-3-540-31951-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics