Abstract
This paper presents conceptual model, architecture and software prototype of a multi-agent intrusion detection system (IDS) operating on the basis of heterogeneous alert correlation. The latter term denotes IDS provided with a structure of anomaly detection–like classifiers designed for detection of intrusions in cooperative mode. An idea is to use a structure of classifiers operating on the basis of various data sources and trained for detection of attacks of particular classes. Alerts in regard to particular attack classes produced by multiple classifiers are correlated at the upper layer. The top-layer classifier solves intrusion detection task: it combines decisions of specialized alert correlation classifiers of the lower layer and produces combined decision in order to more reliably detect an attack class. IDS software prototype operating on the basis of input traffic is implemented as multi-agent system trained to detect attacks of classes DoS, Probe and U2R. The paper describes structure of such multi-layered intrusion detection, outlines preprocessing procedures and ‘data sources, specifies the IDS multi-agent architecture and presents briefly the experimental results received on the basis of DARPA-98 data, which generally confirm the feasibility of the approach and it’s certain advantages.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bass, T.: Intrusion Detection and Multisensor Information Fusion: Creating Cyberspace Situational Awareness. Communication of the ACM 43(4), 99–105 (2000)
http://www.ll.mit.edu/IST/ideval/data/1998/1998_data_index.html
Cuppens, F., Miege, A.: Alert correlation in a cooperative intrusion detection framework. In: IEEE Symposium on Research in Security and Privacy (2002)
Debar, H., Wespi, A.: Aggregation and Correlation of Intrusion-Detection Alerts. In: Lee, W., Mé, L., Wespi, A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 85–103. Springer, Heidelberg (2001)
Gorodetsky, V., Karsaev, O., Samoilov, V.: On-Line Update of Situation Assessment: Generic Approach. International Journal of Knowledge-Based & Intelligent Engineering Systems. IOS Press, Netherlands (2005) (Accepted for publication)
Gorodetsky, V., Karsaev, O., Samoilov, V.: Direct Mining of Rules from Data with Missing Values. Studies in Computational Intelligence. In: Lin, T.Y., Ohsuga, S., Liau, C.J., Hu, X.T., Tsumoto, S. (eds.) Foundation of Data Mining and Knowledge Discovery, pp. 233–264. Springer, Heidelberg (2005)
Gorodetsky, V., Karsaev, O., Samoilov, V., Konushy, V., Mankov, E., Malyshev, A.: Multi-Agent System Development Kit. In: Unland, R., Klusch, M., Calisti, M. (eds.) Multi-Agent Technology and Software Tools, Whitestein Publishers (2005) (Accepted for publication)
Gorodetsky, V., Karsaev, O., Samoilov, V.: On-Line Update of Situation Assessment Based on Asynchronous Data Streams. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3213, pp. 1136–1142. Springer, Heidelberg (2004)
Gorodetski, V., Skormin, V., Popyack, L.: Data Mining Technology for Failure Prognostics of Avionics. IEEE Transactions on Aerospace and Electronic Systems 38(2), 388–403 (2002)
Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., Srivastava, J.: A Comparative Study of Anomaly Detection Schemes in Network Intrusion Detection. In: 3rd SIA Conference on Data Mining, San Francisco, CA (2003)
Morin, B., Debar, H.: Correlation of Intrusion Symptoms: An Application of Chronicles. In: Vigna, G., Krügel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820, pp. 94–112. Springer, Heidelberg (2003)
Pietraszek, T.: Using Adaptive Alert Classification to Reduce False Positives in Intrusion Detection. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 102–124. Springer, Heidelberg (2004)
Song, T., Ko, K., Alves-Foss, J., Zhang, C., Levitt, K.: Formal Reasoning About Intrusion Detection Systems. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 278–295. Springer, Heidelberg (2004)
Valdes, A., Skinner, S.: Probabilistic Alert Correlation. In: Lee, W., Mé, L., Wespi, A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 54–68. Springer, Heidelberg (2001)
Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems 3(3), 285–312 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gorodetsky, V., Karsaev, O., Samoilov, V., Ulanov, A. (2005). Asynchronous Alert Correlation in Multi-agent Intrusion Detection Systems. In: Gorodetsky, V., Kotenko, I., Skormin, V. (eds) Computer Network Security. MMM-ACNS 2005. Lecture Notes in Computer Science, vol 3685. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11560326_28
Download citation
DOI: https://doi.org/10.1007/11560326_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29113-8
Online ISBN: 978-3-540-31998-6
eBook Packages: Computer ScienceComputer Science (R0)