[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Recurrent Neuro-fuzzy Network Models for Reverse Engineering Gene Regulatory Interactions

  • Conference paper
Computational Life Sciences (CompLife 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3695))

Included in the following conference series:

Abstract

Understanding the way gene regulatory networks (complex systems of genes, proteins and other molecules) function and interact to carry out specific cell functions is currently one of the central goals in computational molecular biology. We propose an approach for inferring the complex causal relationships among genes from microarray experimental data based on a recurrent neuro-fuzzy method. The method derives information on the gene interactions in a highly interpretable form (fuzzy rules) and takes into account dynamical aspects of genes regulation through its recurrent structure. The gene interactions retrieved from a set of genes known to be highly regulated during the yeast cell-cycle are validated by biological studies, while our method surpasses previous computational techniques that attempted gene networks reconstruction, being able to retrieve significantly more biologically valid relationships among genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. DeRisi, J.L., Iyer, V.R., Brown, P.O.: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997)

    Article  Google Scholar 

  2. Mavroudi, S., Papadimitriou, S., Bezerianos, A.: Gene expression data analysis with a dynamically extended self-organizing map that exploits class information. Bioinformatics 18, 1446–1453 (2002)

    Article  Google Scholar 

  3. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display if genome-wide expression patterns. Proc. Natl. Acad. Science 95, 14863–14868 (1998)

    Article  Google Scholar 

  4. Golub, T.R., Slonim, D.K., Tamayo, P., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  5. Golub, T.R., Slonim, D.K., Tamayo, P., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  6. Liang, S., Fuhrman, S., Somogyi, R.: REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. Pac. Symp. Biocomputing, 18–29 (2000)

    Google Scholar 

  7. Tegner, J., Yeung, M.K., Hasty, J., Collins, J.J.: Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proc. Natl. Acad. Science 100, 5944–5949 (2003)

    Article  Google Scholar 

  8. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. Comp. Biology 7, 601–620 (2000)

    Article  Google Scholar 

  9. Juang, C.-F., Lin, C.T.: A recurrent self-organizing neural fuzzy inference network. IEEE Trans. Neural Networks 10, 828–845 (1999)

    Article  Google Scholar 

  10. Juang, C.-F., Lin, C.T.: A recurrent self-organizing neural fuzzy inference network. IEEE Trans. Neural Networks 10, 828–845 (1999)

    Article  Google Scholar 

  11. Li, F., Long, T., Lu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Science 101, 4781–4786 (2004)

    Article  Google Scholar 

  12. Lin, C.T., Lee, C.S.G.: Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems. IEEE Trans. Fuzzy Syst. 2, 46–63 (1993)

    Google Scholar 

  13. Guthke, R., Moller, U., Hoffmann, M., Thies, F., Topfer, S.: Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection. Bioinformatics 8, 1626–1634 (2005)

    Google Scholar 

  14. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iver, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridisation. Mol. Biol. Cell. 9, 3273–3297 (1998)

    Google Scholar 

  15. Oba, S., Sato, M., Takemasa, I., et al.: A Bayesian missing value estimation method for gene expression profile data. Bioinformatics 19, 2088–2096 (2003)

    Article  Google Scholar 

  16. Futcher, B.: Transcriptional Regulatory Networks of the yeast cell-cycle. Curr. Opin. Cell Biol. 14, 676–683 (2002)

    Article  Google Scholar 

  17. Soinov, L., Krestyaninova, M., Brazma, A.: Towards reconstruction of gene networrks from expression data by supervised learning. Genome Biology 4, R6.1–R6.10 (2003)

    Google Scholar 

  18. Sokhansanj, B., Fitch, P., Quong, J., Quong, A.: Linear fuzzy gene network models obtained from microarray data by exhaustive search. BMC Bioinformatics 5, 1–12 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maraziotis, I., Dragomir, A., Bezerianos, A. (2005). Recurrent Neuro-fuzzy Network Models for Reverse Engineering Gene Regulatory Interactions. In: R. Berthold, M., Glen, R.C., Diederichs, K., Kohlbacher, O., Fischer, I. (eds) Computational Life Sciences. CompLife 2005. Lecture Notes in Computer Science(), vol 3695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11560500_3

Download citation

  • DOI: https://doi.org/10.1007/11560500_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29104-6

  • Online ISBN: 978-3-540-31726-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics