[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Algorithms for the Automated Absolute Quantification of Diagnostic Markers in Complex Proteomics Samples

  • Conference paper
Computational Life Sciences (CompLife 2005)

Abstract

HPLC-ESI-MS is rapidly becoming an established standard method for shotgun proteomics. Currently, its major drawbacks are two-fold: quantification is mostly limited to relative quantification and the large amount of data produced by every individual experiment can make manual analysis quite difficult. Here we present a new, combined experimental and algorithmic approach to absolutely quantify proteins from samples with unprecedented precision. We apply the method to the analysis of myoglobin in human blood serum, which is an important diagnostic marker for myocardial infarction. Our approach was able to determine the absolute amount of myoglobin in a serum sample through a series of standard addition experiments with a relative error of 2.5%. Compared to a manual analysis of the same dataset we could improve the precision and conduct it in a fraction of the time needed for the manual analysis. We anticipate that our automatic quantitation method will facilitate further absolute or relative quantitation of even more complex peptide samples. The algorithm was developed using our publically available software framework OpenMS (www.openms.de).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Panteghini, M., Pagani, F., Bonetti, G.: The sensitivity of cardiac markers: an evidence-based approach. Clin. Chem. Lab. Med. 37, 1097–1106 (1999)

    Article  Google Scholar 

  2. Wu, A.H., Laios, I., Green, S., Gornet, T.G., Wong, S.S., Parmley, L., Tonnesen, A.S., Plaisier, B., Orlando, R.: Immunoassays for serum and urine myoglobin: myoglobin clearance assessed as a risk factor for acute renal failure. Clin. Chem. 40, 796–802 (1994)

    Google Scholar 

  3. Wu, A., Apple, F., Gibler, W., Jesse, R., Warshaw, M., Valdes, J.R.: National academy of clinical biochemistry standards of laboratory practice: recommendations for use of cardiac markers in coronary artery diseases. Clinical Chemistry 45, 110–121 (1999)

    Google Scholar 

  4. Panteghini, M., Apple, F., Christenson, R., Dati, F., Mair, J., Wu, A.: Use of biochemical markers in acute coronary syndromes. Clin. Chem. Lab. Med. 37, 687–693 (1999)

    Article  Google Scholar 

  5. Fesmire, F., Campbell, M., Decker, W., Howell, J., Kline, J.: Clinical policy: critical issues in the evaluation and management of adult patients presenting with suspected acute myocardial infarction or unstable angina. Ann. Emerg. Med. 35, 521–544 (2000)

    Article  Google Scholar 

  6. College of American Pathologists: Cardiac markers survey, Northfield, IL (2003)

    Google Scholar 

  7. Panteghini, M.: Recent approaches to the standardization of cardiac markers. Scand. J. Clin. Lab. Invest. 61, 95–102 (2001)

    Article  Google Scholar 

  8. Panteghini, M.: Standardization of cardiac markers. Totowa, pp. 213–229 (2003)

    Google Scholar 

  9. Dati, F., Linsinger, T., Apple, F., Christenson, R., Mair, J., Ravkilde, J., et al: IFCC project for standardization of myoglobin immunoassays. Clin. Chem. Lab. Med. 40, S311 (2002)

    Google Scholar 

  10. Dati, F., Panteghini, M., Apple, F., Christenson, R., Mair, J., Wu, A.: Proposals from the IFCC committee on standardization of markers of cardiac damage (C-SMCD): strategies and concepts on standardization of cardiac marker assays. Scand. J. Clin. Lab. Invest. 230, 113–123 (1999)

    Article  Google Scholar 

  11. Silva, J., Denny, R., Dorschel, C., Gorenstein, M., Kass, I., Li, G., McKenna, L., Nold, M., Richardson, K., Young, P., Geromanos, S.: Quantitative rpoteomic analysis by accurate mass retention time pairs. Anal. Chem. 77, 2187–2200 (2005)

    Article  Google Scholar 

  12. Orchard, S., Hermjakob, H., Apweiler, R.: The proteomics standards initiative. Proteomics 3, 1374–1376 (2003)

    Article  Google Scholar 

  13. HUPO Proteomics Standards Initiative (2005), http://psidev.sourceforge.net/

  14. de Hoffmann, E., Charette, J., Stroobant, V.: Mass Spectrometry, 2nd edn. John Wiley and Sons, Chichester (2001)

    Google Scholar 

  15. Marco, V.B.D., Bombi, G.G.: Mathematical functions for the representation of chromatographic peaks. Journal of Chromatography A 931, 1–30 (2001)

    Article  Google Scholar 

  16. Pai, S.C.: Temporally convoluted gaussian equations for chromatographic peaks. Journal of Chromatography A 1028, 89–103 (2004)

    Article  Google Scholar 

  17. Mayr, B.M.: Die Kopplung der Flüssigchromatographie mit der Elektrospray-Ionisations- Massenspektrometrie als Werkzeug für die Genomanalyse und die Quantitative Proteomforschung. PhD thesis, Universität des Saarlandes (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gröpl, C. et al. (2005). Algorithms for the Automated Absolute Quantification of Diagnostic Markers in Complex Proteomics Samples. In: R. Berthold, M., Glen, R.C., Diederichs, K., Kohlbacher, O., Fischer, I. (eds) Computational Life Sciences. CompLife 2005. Lecture Notes in Computer Science(), vol 3695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11560500_14

Download citation

  • DOI: https://doi.org/10.1007/11560500_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29104-6

  • Online ISBN: 978-3-540-31726-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics