[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Symbolic-Numerical Algorithm for Solving the Time-Dependent Schrödinger Equation by Split-Operator Method

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2005)

Abstract

A new computational approach is proposed for the solution of the time-dependent Schrödinger equation (TDSE), in which a symbolic algorithm named GATEO and a numerical scheme based on the finite-element method (FEM) are effectively composed. The GATEO generates the multi-layer operator-difference scheme for TDSE and evaluates the effective Hamiltonian from the original time-dependent Hamiltonian by means of the Magnus expansion and the Pade-approximation. In order to solve the TDSE with the effective Hamiltonian thus obtained, the FEM is applied to a discretization of spatial domain which brings the difference scheme in operator form to the one in algebraic form. The efficiency and accuracy of GATEO and the numerical scheme associated with FEM is confirmed in the second-, fourth-, and sixth-order time-step computations for certain integrable atomic models with external fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Derbov, V.L., Melnikov, L.A., Umansky, I.M., Vinitsky, S.I.: Multipulse laser spectroscopy of p-bartHe + : Measurement and control of the metastable state populations. Phys. Rev. A 55, 3394–3400 (1997)

    Article  Google Scholar 

  2. Butkovskiy, A.G., Samoilenko, Y.I.: Control of Quantum-Mechanical Processes and Systems. Kluwer Academic Publishers, Dordrecht (1990)

    MATH  Google Scholar 

  3. Bankov, N.G., Kaschiev, M.S., Vinitsky, S.I.: Adaptive method for solving the time-dependent Schrödinger equation. Comptes rendus de l’Academie bulgare des Scienses 55, 25–30 (2002)

    MATH  MathSciNet  Google Scholar 

  4. Derbov, V.L., Kaschiev, M.S., Serov, V.V., Gusev, A.A., Vinitsky, S.I.: Adaptive numerical methods for time-dependent Schroedinger equation in atomic and laser physics. In: Proc. SPIE, vol. 5069, pp. 52–60 (2003)

    Google Scholar 

  5. Strang, G., Fix, G.: An Analisys of The Finite Element Method. Prentice Hall, Englewood Cliffs (1973)

    Google Scholar 

  6. Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice Hall, Englewood Cliffs (1982)

    Google Scholar 

  7. Abrashkevich, A.G., Abrashkevich, D.G., Kaschiev, M.S., Puzynin, I.V.: Finite-element solution of the coupled-channel Schrödinger equation using high-order accuracy approximations. Comput. Phys. Commun. 85, 40–65 (1995)

    Article  MATH  Google Scholar 

  8. Abrashkevich, A.G., Kaschiev, M.S., Vinitsky, S.I.: A New Method for Soling an Eigenvalue Problem for a System of Three Coulomb Particles within the Hyperspherical Adiabatic Representation. J. Comp. Phys. 163, 328–348 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Puzynin, I.V., Selin, A.V., Vinitsky, S.I.: A high-order accuracy method for numerical solving of the time-dependent Schrödinger equation. Comput. Phys. Commun. 123, 1–6 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Magnus, W.: On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 649–673 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  11. Samarskiy, A.A.: Theory of difference schemes. Nauka, Moscow (1977) (in Russian)

    Google Scholar 

  12. Crank, J., Nicholson, P.: A practical method for numerical evaluation of solutions of partial differential equation of the heat conduction type. Proc Cambridge Philos. Soc. 43, 50–67 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  13. http://www.nag.co.uk/numeric/numerical_libraries.asp

  14. Olver, P.J.: Application of Lie groups to differential equations. Springer, New York (1986)

    Google Scholar 

  15. Steinberg, S.: Lie Series, Lie Transformations and Their Applications. In: Sa’chez Mondrago’n, J., Wolf, K.B. (eds.) Lie Methods in Optics. Lecture Notes in Physics, pp. 45–103. Springer, New York (1985)

    Google Scholar 

  16. Jannussis, A.: Quantum equations of motion in the finite-difference approach. Lett. al Nuovo Cim. 40, 250–256 (1984)

    Article  MathSciNet  Google Scholar 

  17. Ukolov, Y.A., Chekanov, N.A., Gusev, A.A., Rostovtsev, V.A., Vinitsky, S.I., Uwano, Y.: LINA01: A REDUCE program for the normalization of polynomial Hamiltonians. Computer Physics Communications 166, 66–80 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gusev, A. et al. (2005). Symbolic-Numerical Algorithm for Solving the Time-Dependent Schrödinger Equation by Split-Operator Method. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2005. Lecture Notes in Computer Science, vol 3718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11555964_21

Download citation

  • DOI: https://doi.org/10.1007/11555964_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28966-1

  • Online ISBN: 978-3-540-32070-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics