Abstract
We define a new type of Gröbner bases called Janet-like, since their properties are similar to those for Janet bases. In particular, Janet-like bases also admit an explicit formula for the Hilbert function of polynomial ideals. Cardinality of a Janet-like basis never exceeds that of a Janet basis, but in many cases it is substantially less. Especially, Janet-like bases are much more compact than their Janet counterparts when reduced Gröbner bases have “sparce” leading monomials sets, e.g., for toric ideals. We present an algorithm for constructing Janet-like bases that is a slight modification of our Janet division algorithm. The former algorithm, by the reason of checking not more but often less number of nonmultiplicative prolongations, is more efficient than the latter one.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gerdt, V.P., Blinkov, Y.A.: Janet-like monomial division. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 174–183. Springer, Heidelberg (2005)
Gerdt, V.P., Blinkov, Y.A.: Involutive Bases of Polynomial Ideals. Mathematics and Computers in Simulation 45, 519–542 (1998), http://arXiv.org/math.AC/9912027 ; Minimal Involutive Bases. Ibid., 543–560, http://arXiv.org/math.AC/9912029
Gerdt, V.P.: Involutive Algorithms for Computing Gröbner Bases. In: Cojocaru, S., Pfister, G., Ufnarovski, V. (eds.) Computational Commutative and Non-Commutative algebraic geometry. NATO Science Series, pp. 199–225. IOS Press, Amsterdam (2005), http://arXiv.org/math.AC/0501111
Buchberger, B.: Gröbner Bases: an Algorithmic Method in Polynomial Ideal Theory. In: Bose, N.K. (ed.) Recent Trends in Multidimensional System Theory, Reidel, Dordrecht, pp. 184–232 (1985)
Apel, J.: Theory of Involutive Divisions and an Application to Hilbert Function Computations. Journal of Symbolic Computation 25, 683–704 (1998)
Seiler, W.M.: Involution - The formal theory of differential equations and its applications in computer algebra and numerical analysis, Habilitation thesis, Dept. of Mathematics, University of Mannheim (2002)
Bigatti, A.M., La Scala, R., Robbiano, L.: Computing Toric Ideals. Journal of Symbolic Computation 27, 351–365 (1999)
Pottier, L.: Computation of toric Gröbner bases, Gröbner bases of lattices and integer point sof polytopes, http://www-sop.inria.fr/safir/SAM/Bastat/doc/doc.html
Gerdt, V.P., Blinkov, Y.A.: Janet Bases of Toric Ideals. In: Kredel, H., Seiler, W.K. (eds.) Proceedings of the 8th Rhine Workshop on Computer Algebra, pp. 125–135. University of Mannheim (2002), http://arXiv.org/math.AC/0501180
Morales, M.: Equations des Variétés Monomiales en codimension deaux. Journal of Algebra 175, 1082–1095 (1995)
Hemmecke, R.: Private communication
Giovinni, A., Mora, T., Niesi, G., Robbiano, L., Traverso, C.: One sugar cube, please, or selection strategies in the Buchberger algorithm. In: Proceedings of ISSAC 1991, pp. 49–54. ACM Press, New York (1991)
Gebauer, R., Möller, H.M.: Buchberger’s Algorithm and Staggered Linear Bases. In: Proceedings of SYMSAC 1986, pp. 218–221. ACM Press, New York (1986)
Möller, H.M., Mora, T., Traverso, C.: Gröbner Bases Computation Using Syzygies. In: Proceedings of ISSAC 1992, pp. 320–328. ACM Press, New York (1992)
Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F 5). In: Proceedings of ISSAC 2002, pp. 75–83. ACM Press, New York (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gerdt, V.P., Blinkov, Y.A. (2005). Janet-Like Gröbner Bases. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2005. Lecture Notes in Computer Science, vol 3718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11555964_16
Download citation
DOI: https://doi.org/10.1007/11555964_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28966-1
Online ISBN: 978-3-540-32070-8
eBook Packages: Computer ScienceComputer Science (R0)