Abstract
In this paper we introduce a new type of monomial division called Janet-like, since its properties are similar to those of Janet division. We show that the former division improves the latter one. This means that a Janet divisor is always a Janet-like divisor but the converse is generally not true. Though Janet-like division is not involutive, it preserves all algorithmic merits of Janet division, including Noetherianity, continuity and constructivity. Due to superiority of Janet-like division over Janet division, the algorithm for constructing Gröbner bases based on the new division is more efficient than its Janet division counterpart.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gerdt, V.P., Blinkov, Y.A.: Involutive Bases of Polynomial Ideals. Mathematics and Computers in Simulation 45, 519–542 (1998), http://arXiv.org/math.AC/9912027 Minimal Involutive Bases. Ibid., 543–560, http://arXiv.org/math.AC/9912029
Apel, J.: Theory of Involutive Divisions and an Application to Hilbert Function Computations. Journal of Symbolic Computation 25, 683–704 (1998)
Janet, M.: Leçons sur les Systèmes d’Equations aux Dérivées Partielles, Cahiers Scientifiques, IV. Gauthier-Villars, Paris (1929)
Gerdt, V.P., Blinkov, Y.A., Yanovich, D.A.: Construction of Janet Bases. I. Monomial Bases. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing / CASC 2001, pp. 233–247. Springer, Berlin (2001); II. Polynomial bases, ibid., 249–263
Berth, M., Gerdt, V.: Computation of Involutive Bases with Mathematica. In: Proceedings of the Third International Workshop on Mathematica System in Teaching and Research, Institute of Mathematics & Physics, University of Podlasie, pp. 29–34 (2001)
Hausdorf, M., Seiler, W.M.: Involutive Bases in MuPAD – Part I: Involutive Divisions. mathPAD 11, 51–56 (2002)
Blinkov, Y.A., Cid, C.F., Gerdt, V.P., Plesken, W., Robertz, D.: The Maple Package “Janet”: I. Polynomial Systems. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing / CASC 2003. Institute of Informatics, pp. 31–40. Technical University of Munich, Garching (2003)
Hemmecke, R.: Involutive Bases for Polynomial Ideals. PhD Thesis, RISC Linz (2003)
Gerdt, V.P.: Computational Commutative and Non-Commutative algebraic geometry. In: Cojocaru, S., Pfister, G., Ufnarovski, V. (eds.) Computational Commutative and Non-Commutative algebraic geometry. NATO Science Series, pp. 199–225. IOS Press, Amsterdam (2005), http://arXiv.org/math.AC/0501111
Buchberger, B.: Gröbner Bases: an Algorithmic Method in Polynomial Ideal Theory. In: Bose, N.K. (ed.) Recent Trends in Multidimensional System Theory, Reidel, Dordrecht, pp. 184–232 (1985)
Gerdt, V.P., Blinkov, Y.A.: Janet Bases of Toric Ideals. In: Kredel, H., Seiler, W.K. (eds.) Proceedings of the 8th Rhine Workshop on Computer Algebra, pp. 125–135. University of Mannheim (2002), http://arXiv.org/math.AC/0501180
Gerdt, V.P., Blinkov, Y.A.: Janet-like Gröbner Bases. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 184–195. Springer, Heidelberg (2005)
Giovinni, A., Mora, T., Niesi, G., Robbiano, L., Traverso, C.: One sugar cube, please, or selection strategies in the Buchberger algorithm. In: Proceedings of ISSAC 1991, pp. 49–54. ACM Press, New York (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gerdt, V.P., Blinkov, Y.A. (2005). Janet-Like Monomial Division. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2005. Lecture Notes in Computer Science, vol 3718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11555964_15
Download citation
DOI: https://doi.org/10.1007/11555964_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28966-1
Online ISBN: 978-3-540-32070-8
eBook Packages: Computer ScienceComputer Science (R0)