[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Janet-Like Monomial Division

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3718))

Included in the following conference series:

Abstract

In this paper we introduce a new type of monomial division called Janet-like, since its properties are similar to those of Janet division. We show that the former division improves the latter one. This means that a Janet divisor is always a Janet-like divisor but the converse is generally not true. Though Janet-like division is not involutive, it preserves all algorithmic merits of Janet division, including Noetherianity, continuity and constructivity. Due to superiority of Janet-like division over Janet division, the algorithm for constructing Gröbner bases based on the new division is more efficient than its Janet division counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gerdt, V.P., Blinkov, Y.A.: Involutive Bases of Polynomial Ideals. Mathematics and Computers in Simulation 45, 519–542 (1998), http://arXiv.org/math.AC/9912027 Minimal Involutive Bases. Ibid., 543–560, http://arXiv.org/math.AC/9912029

  2. Apel, J.: Theory of Involutive Divisions and an Application to Hilbert Function Computations. Journal of Symbolic Computation 25, 683–704 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Janet, M.: Leçons sur les Systèmes d’Equations aux Dérivées Partielles, Cahiers Scientifiques, IV. Gauthier-Villars, Paris (1929)

    Google Scholar 

  4. Gerdt, V.P., Blinkov, Y.A., Yanovich, D.A.: Construction of Janet Bases. I. Monomial Bases. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing / CASC 2001, pp. 233–247. Springer, Berlin (2001); II. Polynomial bases, ibid., 249–263

    Google Scholar 

  5. Berth, M., Gerdt, V.: Computation of Involutive Bases with Mathematica. In: Proceedings of the Third International Workshop on Mathematica System in Teaching and Research, Institute of Mathematics & Physics, University of Podlasie, pp. 29–34 (2001)

    Google Scholar 

  6. Hausdorf, M., Seiler, W.M.: Involutive Bases in MuPAD – Part I: Involutive Divisions. mathPAD 11, 51–56 (2002)

    Google Scholar 

  7. Blinkov, Y.A., Cid, C.F., Gerdt, V.P., Plesken, W., Robertz, D.: The Maple Package “Janet”: I. Polynomial Systems. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing / CASC 2003. Institute of Informatics, pp. 31–40. Technical University of Munich, Garching (2003)

    Google Scholar 

  8. Hemmecke, R.: Involutive Bases for Polynomial Ideals. PhD Thesis, RISC Linz (2003)

    Google Scholar 

  9. Gerdt, V.P.: Computational Commutative and Non-Commutative algebraic geometry. In: Cojocaru, S., Pfister, G., Ufnarovski, V. (eds.) Computational Commutative and Non-Commutative algebraic geometry. NATO Science Series, pp. 199–225. IOS Press, Amsterdam (2005), http://arXiv.org/math.AC/0501111

    Google Scholar 

  10. Buchberger, B.: Gröbner Bases: an Algorithmic Method in Polynomial Ideal Theory. In: Bose, N.K. (ed.) Recent Trends in Multidimensional System Theory, Reidel, Dordrecht, pp. 184–232 (1985)

    Google Scholar 

  11. Gerdt, V.P., Blinkov, Y.A.: Janet Bases of Toric Ideals. In: Kredel, H., Seiler, W.K. (eds.) Proceedings of the 8th Rhine Workshop on Computer Algebra, pp. 125–135. University of Mannheim (2002), http://arXiv.org/math.AC/0501180

  12. Gerdt, V.P., Blinkov, Y.A.: Janet-like Gröbner Bases. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 184–195. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Giovinni, A., Mora, T., Niesi, G., Robbiano, L., Traverso, C.: One sugar cube, please, or selection strategies in the Buchberger algorithm. In: Proceedings of ISSAC 1991, pp. 49–54. ACM Press, New York (1991)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gerdt, V.P., Blinkov, Y.A. (2005). Janet-Like Monomial Division. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2005. Lecture Notes in Computer Science, vol 3718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11555964_15

Download citation

  • DOI: https://doi.org/10.1007/11555964_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28966-1

  • Online ISBN: 978-3-540-32070-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics