[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Intelligent Control of AVR System Using GA-BF

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3684))

Abstract

This paper deals with hybrid system (GA-BF) based on the conventional GA (Genetic Algorithm) and BF (Bacterial Foraging) which is social foraging behavior of bacteria for AVR system. This approach provides us with novel hybrid model based on foraging behavior and with also a possible new connection between evolutionary forces in social foraging and distributed nongradient optimization algorithm design for global optimization over noisy surfaces for AVR system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lin, C.-L., Su, H.-W.: Intelligent control theory in guidance and control system design:an Overview. Proc. Natul. Sci., Counc. ROC(A) 24(1), 15–30 (2000)

    Google Scholar 

  2. Fleming, P.J., Purshouse, R.C.: Evolutionary algorithms in control system engineering: A survey. Control Eng. Practice 10, 1223–1241 (2002)

    Article  Google Scholar 

  3. Dotoli, M., Maione, G., Naso, D., Turchiano, E.B.: Genetic identification of dynamical systems with static nonlinearities. In: Proc. IEEE SMCia 2001,Mountain Workshop Soft Computing Industrial Applications, Blacksburg, VA, June 25-27, pp. 65–70 (2001)

    Google Scholar 

  4. Gray, G.J., Murray-Smith, D.J., Li, Y., Sharman, K.C., Weinbrenner, T.: Nonlinear model structure identification using genetic programming. Contr. Eng. Practice (6), 1341–1352 (1998)

    Google Scholar 

  5. Kristinnson, K., Dumont, G.A.: System identification and control using genetic algorithms. IEEE Trans. System, Man, Cybern. 22, 1033–1046 (1992)

    Article  Google Scholar 

  6. Krohling, R.A., Rey, J.P.: Design of optimal disturbance rejection PID controllers using genetic algorithms. IEEE Trans. Evol. Comput. 5, 78–82 (2001)

    Article  Google Scholar 

  7. Gaing, Z.-L.: A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System. IEEE Trans. Energy Con. 19(2), 384–391 (2004)

    Article  Google Scholar 

  8. Stephens, D.W., Krebs, J.R.: Foraging Theory. Princeton University Press, Princeton (1986)

    Google Scholar 

  9. Alcock, J.: Animal Behavior, .An Evolutionary Approach, Sinauer Associates. Sunderland, Massachusetts (1998)

    Google Scholar 

  10. Bell, W.J.: Searching Behavior. In: The Behavioral Ecology of Finding Resources, Chapman and Hall, London (1991)

    Google Scholar 

  11. Kim, D.H.: Robust tuning of PID controller with disturbance rejection using bacterial foraging based optimization. In: International symposium on computational intelligent and industrial application (ISCIIA2004), Hikou, China, December 20-22 (2004)

    Google Scholar 

  12. Kim, D.H.: Robust PID controller tuning using multiobjective optimization based on clonal selection of immune algorithm. In: Proc. Int. Conf. Knowledge-based intelligent information and engineering systems, pp. 50–56. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, D.H., Cho, J.H. (2005). Intelligent Control of AVR System Using GA-BF. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2005. Lecture Notes in Computer Science(), vol 3684. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11554028_119

Download citation

  • DOI: https://doi.org/10.1007/11554028_119

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28897-8

  • Online ISBN: 978-3-540-31997-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics