[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Feature-Constrained Texturing System for 3D Models

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3683))

  • 1074 Accesses

Abstract

Significant number of parameterization methods has been proposed to perform good quality of texturing 3D models. However, most methods are hard to be extended for handling the texture mapping with constraints. In this paper, we develop a new algorithm to achieve the matching of the features between the model and texture image. To minimize the distortion artifacts from the matching algorithm, a L2 stretch metric is also applied to optimize the u,v map defined in parameterization domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahlfors, L.V., Sario, L.: Riemann Surfaces. Princeton University Press, Princeton (1960)

    MATH  Google Scholar 

  2. Maillot, J., Yahia, H., Verroust, A.: Interactive texture mapping. In: Proceedings of SIGGRAPH, pp. 27–34 (1993)

    Google Scholar 

  3. Sander, P., Snyder, J., Gortler, S., Hoppe, H.: Texture mapping progressive meshes. In: Proceedings of SIGGRAPH, pp. 409–416 (2001)

    Google Scholar 

  4. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. In: Proceedings of SIGGRAPH, pp. 173–182 (1995)

    Google Scholar 

  5. Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Computer Aided Geometric Design 14(3), 231–250 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hormann, K., Greiner, G.: Mips: an efficient global parameterization method. In: Curve and Surface Design: St. Malo 1999, pp. 153–162. Vanderbilt University Press (2000)

    Google Scholar 

  7. Sorkine, Cohen-Or, D., Goldenthal, R., Lischinski, D.: Bounded-distortion Piecewise Mesh Parameterization. IEEE Visualization, 355–362 (2002)

    Google Scholar 

  8. Zigelman, G., Kimmel, R., Kiryati, N.: Texture mapping using surface flattening via multidimensional scaling. IEEE Transactions on Visualization and Computer Graphics 8(2), 198–207 (2002)

    Article  Google Scholar 

  9. Piponi, G., Borshukov, D.: Seamless Texture Mapping of Subdivision Surfaces by Model Pelting and Texture Blending. In: Proceedings of SIGGRAPH, pp. 471–478 (2000)

    Google Scholar 

  10. Gu, X., Gortler, S.J., Hoppe, H.: Geometry Images. In: Proceedings of SIGGRAPH, pp. 355–361 (2002)

    Google Scholar 

  11. Gotsman, C., Gu, X., Sheffer, A.: Fundamentals of Spherical Parameterization for 3D Meshes. In: Proceedings of SIGGRAPH, pp. 358–363 (2003)

    Google Scholar 

  12. Lee, T.Y., Huang, P.H.: Fast and Institutive Polyhedra Morphing Using SMCC Mesh Merging Scheme. IEEE Transactions on Visualization and Computer Graphics 9(1), 85–98 (2003)

    Article  MathSciNet  Google Scholar 

  13. Sheffer, Sturler, E.D.: Smoothing an Overlay Grid to Minimize Linear Distortion in Texture Mapping. ACM Transactions on Graphics 21(4), 874–890 (2002)

    Article  Google Scholar 

  14. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2(1), 15–36 (1993)

    MATH  MathSciNet  Google Scholar 

  15. Tutte, W.: Convex representation of graphs. In: Proc. London Math. Soc., vol. 10 (1960)

    Google Scholar 

  16. Floater, M.S.: Mean value coordinates. Computer Aided Geometric Design 20(1), 19–27 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Levy, B.: Constrained Texture Mapping for Polygon Meshes. In: ACM SIGGRAPG 2001, pp. 417–424 (2001)

    Google Scholar 

  18. Eckstein, I., Surazhsky, V., Gotsman, C.: Texture Mapping with Hard Constraints. Computer Graphics Forum 20(3), 95–104

    Google Scholar 

  19. Kraevoy, V., Sheffer, A., Gotsman, C.: Matchmaker: constructing constrained texture maps. In: ACM SIGGRAPH 2003, pp. 326–333 (2003)

    Google Scholar 

  20. Pach, J., Wenger, R.: Embedding planar graphs with fixed vertex locations. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 263–274. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  21. Lee, T.-Y., Yan, S.-U.: Texture Mapping on Arbitrary 3D Surfaces. In: Lecture Notes on Computer Science, vol. 3024, pp. 721–730. Springer, Heidelberg (2004)

    Google Scholar 

  22. Lee, T.-Y., Huang, P.H.: Fast and Institutive Polyhedra Morphing Using SMCC Mesh Merging Scheme. IEEE Transactions on Visualization and Computer Graphics 9(1), 85–98 (2003)

    Article  MathSciNet  Google Scholar 

  23. Lin, C.-H., Lee, T.-Y.: Metamorphosis of 3D Polyhedral Models Using Progressive Connectivity Transformations. IEEE Transactions on Visualization and Computer Graphics 11(1), 2–12 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, TY., Yan, SU. (2005). Feature-Constrained Texturing System for 3D Models. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2005. Lecture Notes in Computer Science(), vol 3683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553939_67

Download citation

  • DOI: https://doi.org/10.1007/11553939_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28896-1

  • Online ISBN: 978-3-540-31990-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics