[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Bayesian Network Classifiers for Time-Series Microarray Data

  • Conference paper
Advances in Intelligent Data Analysis VI (IDA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3646))

Included in the following conference series:

Abstract

Microarray data from time-series experiments, where gene expression profiles are measured over the course of the experiment, require specialised algorithms. In this paper we introduce new architectures of Bayesian classifiers that highlight how both relative and absolute temporal relationships can be captured in order to understand how biological mechanisms differ. We show that these classifiers improve the classification of microarray data and at the same time ensure that the models can easily be analysed by biologists by incorporating time transparently. In this paper we focus on data that has been generated to explore different types of muscular dystrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cohn, R.D., Campbell, K.P.: Molecular basis of muscular dystrophies. Muscle Nerve 23, 1456–1471 (2000)

    Article  Google Scholar 

  2. Dalkilic, I., Kunkel, L.M.: Muscular dystrophies: genes to pathogenesis. Curr.Opin.Genet.Dev. 13, 213–238 (2003)

    Article  Google Scholar 

  3. Friedman, N.: Learning the structure of dynamic probabilistic networks. In: Proceedings of the 14th Annual Conference on Uncertainty in AI, pp. 139–147 (1998)

    Google Scholar 

  4. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  5. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. Journal of Computational Biology 7, 601–620 (2000)

    Article  Google Scholar 

  6. Lam, W., Bacchus, F.: Learning Bayesian belief networks: an approach based on the MDL principle. Computational Intelligence 10(4), 269–293 (1994)

    Article  Google Scholar 

  7. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  8. Ramoni, M., Sebstiani, P., Cohen, P.: Bayesian clustering by dynamics. Machine Learning 47(1), 91–121 (2002)

    Article  MATH  Google Scholar 

  9. Tucker, A., Vinciotti, V., Garway-Heath, D., Liu, X.: A spatio-temporal bayesian network classifier for understanding visual field deterioration. In: Artificial Intelligence in Medicine (2005) (to Appear)

    Google Scholar 

  10. Turk, R., Sterrenburg, E., de Meijer, E.J., van Ommen, G.J.B., den Dunnen, J.T., Hoen, ’t Hoen, P.A.: Muscle regeneration in dystrophin-deficient mdx mice studied by gene expression profiling (submitted)

    Google Scholar 

  11. Turk, R., Sterrenburg, E., Wees, C.G.C.v.d., Meijer, E.J.d., Groh, S., Campbell, K., Noguchi, S., Ommen, G.J.B.v., Dunnen, J.T.d., Hoen, P.A.C.’.: Common pathological mechanisms in mouse models for muscular dystrophies (submitted)

    Google Scholar 

  12. Vinciotti, V., Tucker, A., Liu, X., Panteris, E., Kellam, P.: Identifying genes with high confidence from small samples. In: Workshop on Data Mining in Functional Genomics and Proteomics, European Conference in Artificial Intelligence (2004)

    Google Scholar 

  13. Wit, E.C., McClure, J.D.: Statistics for Microarrays: Design, Analysis and Inference. John Wiley & Sons, Chichester (2004)

    MATH  Google Scholar 

  14. Zou, M., Conzen, S.D.: A new dynamic bayesian network approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21, 71–79 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tucker, A., Vinciotti, V., ’t Hoen, P.A.C., Liu, X. (2005). Bayesian Network Classifiers for Time-Series Microarray Data. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds) Advances in Intelligent Data Analysis VI. IDA 2005. Lecture Notes in Computer Science, vol 3646. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552253_43

Download citation

  • DOI: https://doi.org/10.1007/11552253_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28795-7

  • Online ISBN: 978-3-540-31926-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics