Abstract
An original on-line mixture model-based clustering algorithm is presented in this paper. The proposed algorithm is a stochastic gradient ascent derived from the Classification EM (CEM) algorithm. It generalizes the on-line k-means algorithm. Using synthetic data sets, the proposed algorithm is compared to CEM and another on-line clustering algorithm. The results show that the proposed method provides a fast and accurate estimation when mixture components are relatively well separated.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bottou, L.: Une approche théorique de l’apprentissage connexioniste; applications à la reconnaissance de la parole, Thèse de Doctorat, université d’Orsay (1991)
Bottou, L.: Online learning and stochastic approximations. In: Saad, D. (ed.) online learning in neural networks. Cambridge University Press, Cambridge (1998)
Celeux, G., Govaert, G.: A classification EM algorithm for clustering and two stochastic versions. Computational Statistics and Data Analysis 14, 315–332 (1992)
Celeux, G., Govaert, G.: Gaussian parsimonious clustering models. Pattern Recognition 28(5), 781–793 (1995)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Pattern Recognition 28(5); Journal of Royal Statistal Society Series B 39(1), 1–38 (1977)
MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematics, Statistics and Probability, vol. 1, pp. 281–298 (1967)
Samé, A., Ambroise, C., Govaert, G.: A mixture model approach for on-line clustering. In: Antoch, J. (ed.) Proceedings of Computational Statistics, COMPSTAT 2004, pp. 1759–1765. Physica-Verlag (2004)
Scott, A.J., Symons, M.J.: Clustering methods based on likelihood ratio criteria. Biometrics 27, 387–397 (1971)
Titterington, D.M.: Recursive parameter estimation using incomplete data. Journal of Royal Statistal Society Series B 46, 257–267 (1984)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Samé, A., Govaert, G., Ambroise, C. (2005). A Mixture Model-Based On-line CEM Algorithm. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds) Advances in Intelligent Data Analysis VI. IDA 2005. Lecture Notes in Computer Science, vol 3646. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552253_34
Download citation
DOI: https://doi.org/10.1007/11552253_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28795-7
Online ISBN: 978-3-540-31926-9
eBook Packages: Computer ScienceComputer Science (R0)