[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Mixture Model-Based On-line CEM Algorithm

  • Conference paper
Advances in Intelligent Data Analysis VI (IDA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3646))

Included in the following conference series:

Abstract

An original on-line mixture model-based clustering algorithm is presented in this paper. The proposed algorithm is a stochastic gradient ascent derived from the Classification EM (CEM) algorithm. It generalizes the on-line k-means algorithm. Using synthetic data sets, the proposed algorithm is compared to CEM and another on-line clustering algorithm. The results show that the proposed method provides a fast and accurate estimation when mixture components are relatively well separated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bottou, L.: Une approche théorique de l’apprentissage connexioniste; applications à la reconnaissance de la parole, Thèse de Doctorat, université d’Orsay (1991)

    Google Scholar 

  2. Bottou, L.: Online learning and stochastic approximations. In: Saad, D. (ed.) online learning in neural networks. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  3. Celeux, G., Govaert, G.: A classification EM algorithm for clustering and two stochastic versions. Computational Statistics and Data Analysis 14, 315–332 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Celeux, G., Govaert, G.: Gaussian parsimonious clustering models. Pattern Recognition 28(5), 781–793 (1995)

    Article  Google Scholar 

  5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Pattern Recognition 28(5); Journal of Royal Statistal Society Series B 39(1), 1–38 (1977)

    Google Scholar 

  6. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematics, Statistics and Probability, vol. 1, pp. 281–298 (1967)

    Google Scholar 

  7. Samé, A., Ambroise, C., Govaert, G.: A mixture model approach for on-line clustering. In: Antoch, J. (ed.) Proceedings of Computational Statistics, COMPSTAT 2004, pp. 1759–1765. Physica-Verlag (2004)

    Google Scholar 

  8. Scott, A.J., Symons, M.J.: Clustering methods based on likelihood ratio criteria. Biometrics 27, 387–397 (1971)

    Article  Google Scholar 

  9. Titterington, D.M.: Recursive parameter estimation using incomplete data. Journal of Royal Statistal Society Series B 46, 257–267 (1984)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Samé, A., Govaert, G., Ambroise, C. (2005). A Mixture Model-Based On-line CEM Algorithm. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds) Advances in Intelligent Data Analysis VI. IDA 2005. Lecture Notes in Computer Science, vol 3646. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552253_34

Download citation

  • DOI: https://doi.org/10.1007/11552253_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28795-7

  • Online ISBN: 978-3-540-31926-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics