Abstract
This paper explores the sentiment classification with Information Extraction (IE) approach. The IE approach here is required to detect the sentiment expressions on specific subject (person, product, company and so on) and then to evaluate the sentiment strength and/or the validation of them. Our method can be illustrated logically as: (1) From a given text, extract the sentiment expressions on the specific subjects and attach certain sentiment tag and weight to each of them; (2) Calculate the sentiment indicator for each sentiment genre by accumulating the weights of all the expression with the corresponding tag; (3) Given the indicators on different sentiment genres, use a classifier to predict the sentiment label of the given text. To extract expression robustly when encounter some complex linguistic phenomena (such as ellipsis, anaphora), a new parsing idea named super parsing is proposed. It enables some non-adjacent linguistic constituents to be merged to deduce a new one. As an incremental implementation of super parsing, a system named Approximate Text Analysis (ATA) is described in this paper. As for the classification task, two different classifiers are used: simple linear classifier (called SLC here) and SVM. The experiments show the reasonable performance of our approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Terveen, L., Hill, W., Amento, B., McDonald, D., Creter, J.: Phoaks: a system for sharing recommendations. Communications of ACM 40, 59–62 (1997)
Tatemura, J.: Virtual reviewers for collaborative exploration of movie reviews. In: Proceedings of the 5th international conference on Intelligent user interfaces, pp. 272–275 (2000)
Spertus, E.: Smokey: Automatic recognition of hostile messages. In: Proceedings of Innovative Application of Artificial Intelligence (IAAI), pp. 1058–1065 (1997)
Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 79–86 (2002)
Hearst, M.A.: Direction-based text interpretation as an information access refinement. In: Jacobs, P.S. (ed.) Text-Based Intelligent Systems: Current Research and Practice in Information Extraction and Retrieval, pp. 257–274. Erlbaum, Hillsdale (1992)
Sack, W.: On the computation of point of view. In: Proc. of AAAI 1994, Seattle, WA, p. 1488 (1995)
Das, S., Chen, M.: Yahoo! for amazon:extracting market sentiment from stock message boards. In: Asia Pacic Finance Association Annual Conference, APFA (2001)
Tong, R.M.: An operational system for detecting and tracking opinions in on-line discussion. In: SIGIR Workshop on Operational Text Classifiation (2001)
Turney, P.D.: Thumbs up or thumbs down? semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 417–424 (2002)
Eikvil, L.: Information extraction from world wide web - a survey. Technical Report 945, Norweigan Computing Center (1999)
Muslea, I.: Extraction patterns for information extraction tasks: A survey. In: The AAAI Workshop on Machine Learning for Information Extraction (1999)
Nasukawa, T., Yi, J.: Sentiment analysis: Capturing favorability using natural language processing. In: The Second International Conferences on Knowledge Capture (K-CAP 2003), Sanibel Island, FL, USA, October 2003, pp. 70–77 (2003)
Yi, J., Nasukawa, T., Bunescu, R., Niblack, W.: Sentiment analyzer: Extracting sentiments about a given topic using natural language processing techniques. In: The Third IEEE International Conference on Data Mining (2003)
Kobayashi, N., Inui, K., Matsumoto, Y., Tateishi, K., Fukushima, T.: Collecting evaluative expressions for opinion extraction. In: Su, K.-Y., Tsujii, J., Lee, J.-H., Kwong, O.Y. (eds.) IJCNLP 2004. LNCS (LNAI), vol. 3248, pp. 584–589. Springer, Heidelberg (2005)
Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD-2004), Seattle, Washington, USA (August 2004)
Hu, M., Liu, B.: Mining opinion features in customer reviews. In: Proceedings of Nineteeth National Conference on Artificial Intellgience (AAAI-2004), San Jose, USA (July 2004)
Liu, J., Wu, G.: Apparatus and method for approximate text analysis, Application NO: 200510023589.8, Chinese Patent (2005)
Johnson, M.: Parsing with discontinuous constituents. In: Proceedings of the 23rd conference on Association for Computational Linguistics, Chicago, Illinois, pp. 127–132 (1985)
Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the 5th annual ACM workshop on Computational Learning Theory, pp. 144–152. ACM Press, New York (1992)
Collobert, R., Bengio, S.: SVMTorch: Support vector machines for large-scale regression problems. Journal of Machine Learning Research 1, 143–160 (2001)
Collobert, R., Bengio, S.: SVMTorch: A support vector machine for large-scale regression and classification problems. Journal of Machine Learning Research 1, 143–160 (2001)
Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communications of the ACM 18, 613–620 (1975)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, J., Yao, J., Wu, G. (2005). Sentiment Classification Using Information Extraction Technique. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds) Advances in Intelligent Data Analysis VI. IDA 2005. Lecture Notes in Computer Science, vol 3646. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552253_20
Download citation
DOI: https://doi.org/10.1007/11552253_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28795-7
Online ISBN: 978-3-540-31926-9
eBook Packages: Computer ScienceComputer Science (R0)