[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Face Recognition Using Heteroscedastic Weighted Kernel Discriminant Analysis

  • Conference paper
Pattern Recognition and Image Analysis (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3687))

Included in the following conference series:

  • 1939 Accesses

Abstract

In this paper, we propose a novel heteroscedastic weighted kernel discriminant analysis (HW-KDA) method that extends the linear discriminant analysis (LDA) to deal explicitly with heteroscedasticity and nonlinearity of the face pattern’s distribution by integrating the weighted pairwise Chernoff criterion and Kernel trick. The proposed algorithm has been tested, in terms of classification rate performance, on the multiview UMIST face database. Results indicate that the HW-KDA methodology is able to achieve excellent performance with only a very small set of features and outperforms other two popular kernel face recognition methods, the kernel PCA (KPCA) and generalized discriminant analysis (GDA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J.: Face Recognition: A Literature Survey. ACM Computing Survey 35, 399–458 (2003)

    Article  Google Scholar 

  2. Loog, M., Duin, R.P.W., Haeb-Umbach, R.: Multiclass Linear Simension Reduction byWeighted Pairwise Fisher Criteria. IEEE Trans. Pattern Anal. Mach. Intell. 23, 762–766 (2001)

    Article  Google Scholar 

  3. Loog, M., Duin, R.P.W.: Linear Dimensionality Reduction via a Heteroscedastic Extension of LDA: The Chernoff Criterion. IEEE Trans. Pattern Anal. Mach. Intell. 26, 732–739 (2004)

    Article  Google Scholar 

  4. Qin, A.K., Suganthan, P.N., Loog, M.: Uncorrelated Heterosecdastic LDA Based on the Weighted Pairwise Chernoff Criterion. Pattern Recogniton 38, 613–616 (2005)

    Article  Google Scholar 

  5. Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, New York (1998)

    MATH  Google Scholar 

  6. Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation 10, 1299–1319 (1998)

    Article  Google Scholar 

  7. Baudatg, G., Anouar, F.: Generalized Discriminant Analysis Using a Kernel Approach. Neural Computation 12, 2385–2404 (2000)

    Article  Google Scholar 

  8. Yang, J., Jin, Z., Yang, J.Y., Zhang, D., Frangi, A.F.: Essence of Kernel Fisher Discriminant: KPCA Plus LDA. Pattern Recognition 37, 2097–2100 (2004)

    Article  Google Scholar 

  9. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognitin Using Class Specific Linear Projection. IEEE Trans. Pattern Anal. Machine Intell. 9, 711–720 (1997)

    Google Scholar 

  10. Thomaz, C.E., Gillies, D.F., Feitosa, R.Q.: A New Covariance Estimate for Bayesian Classifier in Biometric Recognition. IEEE Trans. Circuit Syst. Video Technol. 14, 214–223 (2004)

    Article  Google Scholar 

  11. Graham, D.B., Allinson, N.M.: Characterizing Virtual Eigensignatures for General Purpose Face Recognition. In: Face Recognition: From Theory to Applications. NATO ASI Series F, computer and system science, vol. 163, pp. 446–456. Springer, Heidelberg (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liang, Y., Gong, W., Li, W., Pan, Y. (2005). Face Recognition Using Heteroscedastic Weighted Kernel Discriminant Analysis. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_23

Download citation

  • DOI: https://doi.org/10.1007/11552499_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28833-6

  • Online ISBN: 978-3-540-31999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics