Abstract
In this paper, we propose a novel heteroscedastic weighted kernel discriminant analysis (HW-KDA) method that extends the linear discriminant analysis (LDA) to deal explicitly with heteroscedasticity and nonlinearity of the face pattern’s distribution by integrating the weighted pairwise Chernoff criterion and Kernel trick. The proposed algorithm has been tested, in terms of classification rate performance, on the multiview UMIST face database. Results indicate that the HW-KDA methodology is able to achieve excellent performance with only a very small set of features and outperforms other two popular kernel face recognition methods, the kernel PCA (KPCA) and generalized discriminant analysis (GDA).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J.: Face Recognition: A Literature Survey. ACM Computing Survey 35, 399–458 (2003)
Loog, M., Duin, R.P.W., Haeb-Umbach, R.: Multiclass Linear Simension Reduction byWeighted Pairwise Fisher Criteria. IEEE Trans. Pattern Anal. Mach. Intell. 23, 762–766 (2001)
Loog, M., Duin, R.P.W.: Linear Dimensionality Reduction via a Heteroscedastic Extension of LDA: The Chernoff Criterion. IEEE Trans. Pattern Anal. Mach. Intell. 26, 732–739 (2004)
Qin, A.K., Suganthan, P.N., Loog, M.: Uncorrelated Heterosecdastic LDA Based on the Weighted Pairwise Chernoff Criterion. Pattern Recogniton 38, 613–616 (2005)
Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, New York (1998)
Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation 10, 1299–1319 (1998)
Baudatg, G., Anouar, F.: Generalized Discriminant Analysis Using a Kernel Approach. Neural Computation 12, 2385–2404 (2000)
Yang, J., Jin, Z., Yang, J.Y., Zhang, D., Frangi, A.F.: Essence of Kernel Fisher Discriminant: KPCA Plus LDA. Pattern Recognition 37, 2097–2100 (2004)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognitin Using Class Specific Linear Projection. IEEE Trans. Pattern Anal. Machine Intell. 9, 711–720 (1997)
Thomaz, C.E., Gillies, D.F., Feitosa, R.Q.: A New Covariance Estimate for Bayesian Classifier in Biometric Recognition. IEEE Trans. Circuit Syst. Video Technol. 14, 214–223 (2004)
Graham, D.B., Allinson, N.M.: Characterizing Virtual Eigensignatures for General Purpose Face Recognition. In: Face Recognition: From Theory to Applications. NATO ASI Series F, computer and system science, vol. 163, pp. 446–456. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liang, Y., Gong, W., Li, W., Pan, Y. (2005). Face Recognition Using Heteroscedastic Weighted Kernel Discriminant Analysis. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_23
Download citation
DOI: https://doi.org/10.1007/11552499_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28833-6
Online ISBN: 978-3-540-31999-3
eBook Packages: Computer ScienceComputer Science (R0)