Abstract
In this work we tackle a particular case of image segmentation, the automatic detection of the amount and type of clouds over the Iberian Peninsula using satellite images. To segment the images we classify each pixel of the image into one of the classes defined using a neural network and a set of features representative of the pixel. We emphasized in the preprocessing stage, extracting and selecting a suitable set of features from the images to carry out an optimal classification. To carry out the feature extraction we use the independent component analysis (ICA) algorithm. The features extracted with this algorithm are very dependent on the dimension of the patches, so we extract several sets of features, one for each value of the dimension of the patch. All of these sets of features are joined together to form an initial characteristic vector of the pixels of the images. Finally, we reduce the dimensionality of this initial characteristic vector by means of Genetic Algorithms (GA), choosing the best subset of features that offer the best classification results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lee, J., Weger, R.C., Sengupta, S.K., And Welch, R.M.: A Neural Network Approach to Cloud Classification. IEEE Transactions on Geoscience and Remote Sensing 28(5), 846–855 (1990)
Macías, M., López, F.J., Serrano, A., Astillero, A.: A Comparative Study of two Neural Models for Cloud Screening of Iberian Peninsula Meteosat Images. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2085, pp. 184–191. Springer, Heidelberg (2001)
Astillero, A., Serrano, A., Núñez, M., García, J.A., Macías, M., Gónzalez, H.M.: A Study of the evolution of the cloud cover over Cáceres (Spain) along 1997, estimated from Meteosat images. In: Proceedings of the 2001 EUMETSAT Meteorological Satellite Data Users’ Conference, pp. 353–359 (2001)
Bankert, R.L., et al.: Cloud Classification of AVHRR Imagery in Maritime Regions Using a Probabilistic Neural Network. Journal of Applied. Meteorology 33, 909–918 (1994)
Tian, B., Shaikh, M.A., Azimi, M.R., Vonder Haar, T.H., Reinke, D.: An study of neural network-based cloud classification using textural and spectral features. IEE trans. Neural Networks 10, 138–151 (1999)
Tian, B., Azimi, M.R., Vonder Haar, T.H., Reinke, D.: Temporal Updating Scheme for Probabilistic Neural Network with Application to Satellite Cloud Classification. IEEE trans. Neural Networks 11(4), 903–918 (2000)
Welch, R.M., Kuo, K.S., Sengupta, S.K., Chen, D.W.: Cloud field classification based upon high spatial resolution textural feature (I): Gray-level cooccurrence matrix approach. J. Geophys. Res. 93, 12633–81 (1988)
Welch, R.M., et al.: Polar cloud and surface classification using AVHRR imagery: An intercomparison of methods. J. Appl. Meteorol. 31, 405–420 (1992)
Lamei, N., et al.: Cloud-type discrimitation via multispectral textural analysis. Opt. Eng. 33, 1303–1313 (1994)
Haralick, R.M., et al.: Textural features for image classification. IEEE trans. Syst., Man, Cybern. SMC-3, 610–621 (1973)
Augusteijn, M.F.: Performance evaluation of texture measures for ground cover identification in satellite images by means of a neural.network classifier. IEEE trans. Geosc. Remote Sensing 33, 616–625 (1995)
Macías, M., García, C.J., González, H.M., Gallardo, R.: Independent component analysis for cloud screening of Meteosat images. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2687, pp. 551–558. Springer, Heidelberg (2003)
Doak, J.: An evaluatin of feature selection methods and their application to computer security (Technical Report CSE-92-18). Davis, CA: University of California, Department of Computer Science
Aha, D.W., Bankert, R.L.: A Comparative Evaluation of Sequential Feature Selection Algorithms. In: Fisher, V.D., Lenz, J.H. (eds.) Artificial Intelligence and Statistics. Springer, New York (1996)
Tay, F.E.H., Cao, L.J.: A comparative study of saliency analysis and genetic algorithm for feature selection in support vector machines. Intelligent Data Analysis 5(3), 191–209 (2001)
Tettamanzi, A., Tomassini, M.: Soft Computing. Integrating Evolutionary. In: Neural and Fuzzy Systems. Springer, Heidelberg (2001)
Brill, F.Z., Brown, D.E., Martin, W.N.: Fast genetic selection of features for neural net-work classifiers. IEEE Transactions on Neural Networks 3(2), 324–328 (1992)
Macías, M., Garcia, C.J., Velasco, H.M., Gallardo, R., Serrano, A.: A comparison of PCA and GA selected features for cloud field classification. Lectures Notes in Artificial Intelligence, vol. 527, pp. 42–49 (2002)
García, C.J., Macías, M., Serrano, A., González, H.M., Gallardo, R.: A comparison of PCA, ICA and GA selected features for cloud field classification. Journal of Intelligent & Fuzzy Systems. 12, 213–219
Riedmiller, M., Braun, H.: A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm. In: Proceedings of the IEEE International Conference on Neural Networks 1993, ICNN 1993 (1993)
Hyvärinen, A., Oja, E., Hover, P., Hurri, J.: Image feature extraction by sparse coding and independent component analisys. In: Proc. Int. Conf. On Pattern Recognition (ICPR 1998), Brisbane, Australia, pp. 1268–1273 (1998)
Comon, P.: Independent component analysis, a new concept? Signal Processing 36(3), 287–314 (1994)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley and Sons, Chichester (2001)
Jutten, C., Herault, J.: Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Processing 24(1), 1–10 (1991)
Hyvärinen, A., Oja, E.: Independent Component Analysis: Algorithms and Applications. Neural Networks 13(4-5), 411–430 (2000)
Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. On Neural Networks 10(3), 626–634 (1999)
R and C code implementation of the fastICA package, http://www.cis.hut.fi/projects/ica/fastica/
The, R. project for statistical computing, http://www.r-project.org/
Bellman, R.: Adaptive Control Processes: A Guided Tour. Princeton University Press, New Jersey
Levine, D.: Users Guide to the PGAPack Parallel Genetic Algorithm Library. Research Report ANL-95/18. Argonne Na
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Macías-Macías, M., García-Orellana, C.J., González-Velasco, H., Gallardo-Caballero, R. (2005). ICA and GA Feature Extraction and Selection for Cloud Classification. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Data Mining. ICAPR 2005. Lecture Notes in Computer Science, vol 3686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11551188_53
Download citation
DOI: https://doi.org/10.1007/11551188_53
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28757-5
Online ISBN: 978-3-540-28758-2
eBook Packages: Computer ScienceComputer Science (R0)