[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

ICA and GA Feature Extraction and Selection for Cloud Classification

  • Conference paper
Pattern Recognition and Data Mining (ICAPR 2005)

Abstract

In this work we tackle a particular case of image segmentation, the automatic detection of the amount and type of clouds over the Iberian Peninsula using satellite images. To segment the images we classify each pixel of the image into one of the classes defined using a neural network and a set of features representative of the pixel. We emphasized in the preprocessing stage, extracting and selecting a suitable set of features from the images to carry out an optimal classification. To carry out the feature extraction we use the independent component analysis (ICA) algorithm. The features extracted with this algorithm are very dependent on the dimension of the patches, so we extract several sets of features, one for each value of the dimension of the patch. All of these sets of features are joined together to form an initial characteristic vector of the pixels of the images. Finally, we reduce the dimensionality of this initial characteristic vector by means of Genetic Algorithms (GA), choosing the best subset of features that offer the best classification results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee, J., Weger, R.C., Sengupta, S.K., And Welch, R.M.: A Neural Network Approach to Cloud Classification. IEEE Transactions on Geoscience and Remote Sensing 28(5), 846–855 (1990)

    Article  Google Scholar 

  2. Macías, M., López, F.J., Serrano, A., Astillero, A.: A Comparative Study of two Neural Models for Cloud Screening of Iberian Peninsula Meteosat Images. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2085, pp. 184–191. Springer, Heidelberg (2001)

    Google Scholar 

  3. Astillero, A., Serrano, A., Núñez, M., García, J.A., Macías, M., Gónzalez, H.M.: A Study of the evolution of the cloud cover over Cáceres (Spain) along 1997, estimated from Meteosat images. In: Proceedings of the 2001 EUMETSAT Meteorological Satellite Data Users’ Conference, pp. 353–359 (2001)

    Google Scholar 

  4. Bankert, R.L., et al.: Cloud Classification of AVHRR Imagery in Maritime Regions Using a Probabilistic Neural Network. Journal of Applied. Meteorology 33, 909–918 (1994)

    Article  Google Scholar 

  5. Tian, B., Shaikh, M.A., Azimi, M.R., Vonder Haar, T.H., Reinke, D.: An study of neural network-based cloud classification using textural and spectral features. IEE trans. Neural Networks 10, 138–151 (1999)

    Article  Google Scholar 

  6. Tian, B., Azimi, M.R., Vonder Haar, T.H., Reinke, D.: Temporal Updating Scheme for Probabilistic Neural Network with Application to Satellite Cloud Classification. IEEE trans. Neural Networks 11(4), 903–918 (2000)

    Article  Google Scholar 

  7. Welch, R.M., Kuo, K.S., Sengupta, S.K., Chen, D.W.: Cloud field classification based upon high spatial resolution textural feature (I): Gray-level cooccurrence matrix approach. J. Geophys. Res. 93, 12633–81 (1988)

    Google Scholar 

  8. Welch, R.M., et al.: Polar cloud and surface classification using AVHRR imagery: An intercomparison of methods. J. Appl. Meteorol. 31, 405–420 (1992)

    Article  Google Scholar 

  9. Lamei, N., et al.: Cloud-type discrimitation via multispectral textural analysis. Opt. Eng. 33, 1303–1313 (1994)

    Article  Google Scholar 

  10. Haralick, R.M., et al.: Textural features for image classification. IEEE trans. Syst., Man, Cybern. SMC-3, 610–621 (1973)

    Article  MathSciNet  Google Scholar 

  11. Augusteijn, M.F.: Performance evaluation of texture measures for ground cover identification in satellite images by means of a neural.network classifier. IEEE trans. Geosc. Remote Sensing 33, 616–625 (1995)

    Article  Google Scholar 

  12. Macías, M., García, C.J., González, H.M., Gallardo, R.: Independent component analysis for cloud screening of Meteosat images. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2687, pp. 551–558. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Doak, J.: An evaluatin of feature selection methods and their application to computer security (Technical Report CSE-92-18). Davis, CA: University of California, Department of Computer Science

    Google Scholar 

  14. Aha, D.W., Bankert, R.L.: A Comparative Evaluation of Sequential Feature Selection Algorithms. In: Fisher, V.D., Lenz, J.H. (eds.) Artificial Intelligence and Statistics. Springer, New York (1996)

    Google Scholar 

  15. Tay, F.E.H., Cao, L.J.: A comparative study of saliency analysis and genetic algorithm for feature selection in support vector machines. Intelligent Data Analysis 5(3), 191–209 (2001)

    MATH  Google Scholar 

  16. Tettamanzi, A., Tomassini, M.: Soft Computing. Integrating Evolutionary. In: Neural and Fuzzy Systems. Springer, Heidelberg (2001)

    Google Scholar 

  17. Brill, F.Z., Brown, D.E., Martin, W.N.: Fast genetic selection of features for neural net-work classifiers. IEEE Transactions on Neural Networks 3(2), 324–328 (1992)

    Article  Google Scholar 

  18. Macías, M., Garcia, C.J., Velasco, H.M., Gallardo, R., Serrano, A.: A comparison of PCA and GA selected features for cloud field classification. Lectures Notes in Artificial Intelligence, vol. 527, pp. 42–49 (2002)

    Google Scholar 

  19. García, C.J., Macías, M., Serrano, A., González, H.M., Gallardo, R.: A comparison of PCA, ICA and GA selected features for cloud field classification. Journal of Intelligent & Fuzzy Systems. 12, 213–219

    Google Scholar 

  20. Riedmiller, M., Braun, H.: A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm. In: Proceedings of the IEEE International Conference on Neural Networks 1993, ICNN 1993 (1993)

    Google Scholar 

  21. Hyvärinen, A., Oja, E., Hover, P., Hurri, J.: Image feature extraction by sparse coding and independent component analisys. In: Proc. Int. Conf. On Pattern Recognition (ICPR 1998), Brisbane, Australia, pp. 1268–1273 (1998)

    Google Scholar 

  22. Comon, P.: Independent component analysis, a new concept? Signal Processing 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  23. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley and Sons, Chichester (2001)

    Book  Google Scholar 

  24. Jutten, C., Herault, J.: Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Processing 24(1), 1–10 (1991)

    Article  MATH  Google Scholar 

  25. Hyvärinen, A., Oja, E.: Independent Component Analysis: Algorithms and Applications. Neural Networks 13(4-5), 411–430 (2000)

    Article  Google Scholar 

  26. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. On Neural Networks 10(3), 626–634 (1999)

    Article  Google Scholar 

  27. R and C code implementation of the fastICA package, http://www.cis.hut.fi/projects/ica/fastica/

  28. The, R. project for statistical computing, http://www.r-project.org/

  29. Bellman, R.: Adaptive Control Processes: A Guided Tour. Princeton University Press, New Jersey

    Google Scholar 

  30. Levine, D.: Users Guide to the PGAPack Parallel Genetic Algorithm Library. Research Report ANL-95/18. Argonne Na

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Macías-Macías, M., García-Orellana, C.J., González-Velasco, H., Gallardo-Caballero, R. (2005). ICA and GA Feature Extraction and Selection for Cloud Classification. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Data Mining. ICAPR 2005. Lecture Notes in Computer Science, vol 3686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11551188_53

Download citation

  • DOI: https://doi.org/10.1007/11551188_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28757-5

  • Online ISBN: 978-3-540-28758-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics