[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Taxonomy of Classifiers Based on Dissimilarity Features

  • Conference paper
Pattern Recognition and Data Mining (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3686))

Included in the following conference series:

Abstract

A great number of linear and nonlinear classification algorithms can follow from a general representation of discriminant function written as a weighted sum of kernel functions of dissimilarity features. Unified look at the algorithms allows obtaining intermediate classifiers which after tuning of the weights and other model’s parameters can outperform popular dissimilarity based methods. Simulations with artificial and real world data sets revealed efficiency of single layer perceptron trained in a special way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arkedev, A.G., Braverman, E.M.: Computers and Pattern Recognition: Thompson, Washington, DC (1966)

    Google Scholar 

  2. Duin, R.P.W.: Compactness and complexity of pattern recognition problems. In: Perneel, C. (ed.) Proceedings of the Int. Symposium on Pattern Recognition, Memoriam Pierre Devijver, Brussels, B, February 12, Royal Military Academy, Brussels, pp. 124–128 (1999)

    Google Scholar 

  3. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification and Scene Analysis, 2nd edn. John Wiley, New York (2000)

    Google Scholar 

  4. Fix, E., Hodges Jr., J.L.: Discriminatory analysis, nonparametric discrimination: consistency properties. Report No. 4, Project 21-49-004. USAF School of Aviation Medicine, Randolph Field, TX (1951)

    Google Scholar 

  5. Attneave, F.: Dimensions of similarity, Am. J. Psychology 63, 516–556 (1950)

    Article  Google Scholar 

  6. Parzen, E.: On estimation of probability function and mode. Annals of Mathematical Statistics 33, 1065–1076 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  7. Wolverton, C.T., Wagner, T.J.: Asymptotically optimal discriminant functions for pattern classification. IEEE Transactions on Information Theory IT-15, 258–265 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  8. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. ACM, Pittsburgh (1992)

    Chapter  Google Scholar 

  9. Scholkopf, B., Burges, C.J.C., Smola, A.J.: Advances in Kernel Methods: Support vector learning. MIT Press, Cambridge (1999)

    Google Scholar 

  10. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge Univ. Press, Cambridge (2000)

    Google Scholar 

  11. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)

    Google Scholar 

  12. Althoff, K.-D.: Case-based reasoning. In: Chang, S.K. (ed.) Handbook on Software Engineering and Knowledge Engineering. Fundamentals, vol. 1, pp. 549–588. World Scientific, Singapore (2001)

    Google Scholar 

  13. Perner, P.: Are case-based reasoning and dissimilarity-based pattern recognition two sides of the same coin? In: Perner, P. (ed.) MLDM 2001. LNCS (LNAI), vol. 2123, pp. 35–51. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Schuermann, J.: Pattern Classification: A unified view of statistical and neural approaches. John Wiley, New York (1996)

    Google Scholar 

  15. Raudys, S.: Statistical and Neural Classifiers: An integrated approach to design. Springer, London (2001)

    MATH  Google Scholar 

  16. Duin, R.P.W., Pekalska, E., De Ridder, D.: Relational discriminant analysis. Pattern Recognition Letters 20(11-13), 1175–1181 (1999)

    Article  Google Scholar 

  17. Paclik, P., Duin, R.P.W.: Dissimilarity-based classification of spectra: computational issues. Real-Time Imaging 9, 237–244 (2003)

    Article  Google Scholar 

  18. Mottl, V., Seredin, O., Dvoenko, S., Kulikowski, C., Muchnik, I.: Featureless pattern recognition in an imaginary Hilbert space. In: Perner, P. (ed.) MLDM 2001. LNCS (LNAI), vol. 2123, pp. 88–91. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Santini, S., Jain, R.: Similarity measures. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(9), 871–883 (1999)

    Article  Google Scholar 

  20. Pekalska, E., Duin, R.P.W.: Dissimilarity representations allow for building good classifiers. Pattern Recognition Letters 23(8), 943–956 (2002)

    Article  MATH  Google Scholar 

  21. Pekalska, E.: Ph. D. Thesis. Delft University of Technology (2005)

    Google Scholar 

  22. Pekalska, E., Paclik, P., Duin, R.P.W.: A generalized kernel approach to dissimilarity based classification. Journal of Machine Learning Research 2, 175–211 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Raudys, S.: Evolution and generalization of a single neurone. I. SLP as seven statistical classifiers. Neural Networks 11, 283–296 (1998)

    Article  Google Scholar 

  24. Raudys, S.: How good are support vector machines? Neural Networks 13, 9–11 (2000)

    Google Scholar 

  25. Raudys, S., Iwamura, M.: Structures of covariance matrix in handwritten character recognition. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 725–733. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raudys, S. (2005). Taxonomy of Classifiers Based on Dissimilarity Features. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Data Mining. ICAPR 2005. Lecture Notes in Computer Science, vol 3686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11551188_15

Download citation

  • DOI: https://doi.org/10.1007/11551188_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28757-5

  • Online ISBN: 978-3-540-28758-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics