Abstract
A great number of linear and nonlinear classification algorithms can follow from a general representation of discriminant function written as a weighted sum of kernel functions of dissimilarity features. Unified look at the algorithms allows obtaining intermediate classifiers which after tuning of the weights and other model’s parameters can outperform popular dissimilarity based methods. Simulations with artificial and real world data sets revealed efficiency of single layer perceptron trained in a special way.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arkedev, A.G., Braverman, E.M.: Computers and Pattern Recognition: Thompson, Washington, DC (1966)
Duin, R.P.W.: Compactness and complexity of pattern recognition problems. In: Perneel, C. (ed.) Proceedings of the Int. Symposium on Pattern Recognition, Memoriam Pierre Devijver, Brussels, B, February 12, Royal Military Academy, Brussels, pp. 124–128 (1999)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification and Scene Analysis, 2nd edn. John Wiley, New York (2000)
Fix, E., Hodges Jr., J.L.: Discriminatory analysis, nonparametric discrimination: consistency properties. Report No. 4, Project 21-49-004. USAF School of Aviation Medicine, Randolph Field, TX (1951)
Attneave, F.: Dimensions of similarity, Am. J. Psychology 63, 516–556 (1950)
Parzen, E.: On estimation of probability function and mode. Annals of Mathematical Statistics 33, 1065–1076 (1962)
Wolverton, C.T., Wagner, T.J.: Asymptotically optimal discriminant functions for pattern classification. IEEE Transactions on Information Theory IT-15, 258–265 (1969)
Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. ACM, Pittsburgh (1992)
Scholkopf, B., Burges, C.J.C., Smola, A.J.: Advances in Kernel Methods: Support vector learning. MIT Press, Cambridge (1999)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge Univ. Press, Cambridge (2000)
Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)
Althoff, K.-D.: Case-based reasoning. In: Chang, S.K. (ed.) Handbook on Software Engineering and Knowledge Engineering. Fundamentals, vol. 1, pp. 549–588. World Scientific, Singapore (2001)
Perner, P.: Are case-based reasoning and dissimilarity-based pattern recognition two sides of the same coin? In: Perner, P. (ed.) MLDM 2001. LNCS (LNAI), vol. 2123, pp. 35–51. Springer, Heidelberg (2001)
Schuermann, J.: Pattern Classification: A unified view of statistical and neural approaches. John Wiley, New York (1996)
Raudys, S.: Statistical and Neural Classifiers: An integrated approach to design. Springer, London (2001)
Duin, R.P.W., Pekalska, E., De Ridder, D.: Relational discriminant analysis. Pattern Recognition Letters 20(11-13), 1175–1181 (1999)
Paclik, P., Duin, R.P.W.: Dissimilarity-based classification of spectra: computational issues. Real-Time Imaging 9, 237–244 (2003)
Mottl, V., Seredin, O., Dvoenko, S., Kulikowski, C., Muchnik, I.: Featureless pattern recognition in an imaginary Hilbert space. In: Perner, P. (ed.) MLDM 2001. LNCS (LNAI), vol. 2123, pp. 88–91. Springer, Heidelberg (2001)
Santini, S., Jain, R.: Similarity measures. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(9), 871–883 (1999)
Pekalska, E., Duin, R.P.W.: Dissimilarity representations allow for building good classifiers. Pattern Recognition Letters 23(8), 943–956 (2002)
Pekalska, E.: Ph. D. Thesis. Delft University of Technology (2005)
Pekalska, E., Paclik, P., Duin, R.P.W.: A generalized kernel approach to dissimilarity based classification. Journal of Machine Learning Research 2, 175–211 (2002)
Raudys, S.: Evolution and generalization of a single neurone. I. SLP as seven statistical classifiers. Neural Networks 11, 283–296 (1998)
Raudys, S.: How good are support vector machines? Neural Networks 13, 9–11 (2000)
Raudys, S., Iwamura, M.: Structures of covariance matrix in handwritten character recognition. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 725–733. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Raudys, S. (2005). Taxonomy of Classifiers Based on Dissimilarity Features. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Data Mining. ICAPR 2005. Lecture Notes in Computer Science, vol 3686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11551188_15
Download citation
DOI: https://doi.org/10.1007/11551188_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28757-5
Online ISBN: 978-3-540-28758-2
eBook Packages: Computer ScienceComputer Science (R0)