[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Indexing Approach for Representing Multimedia Objects in High-Dimensional Spaces Based on Expectation Maximization Algorithm

  • Conference paper
Advances in Multimedia Information Systems (MIS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3665))

Included in the following conference series:

  • 320 Accesses

Abstract

In this paper we introduce a new indexing approach to representing multimedia object classes generated by the Expectation Maximization clustering algorithm in a balanced and dynamic tree structure. To this aim the EM algorithm has been modified in order to obtain at each step of its recursive application balanced clusters. In this manner our tree provides a simple and practical solution to index clustered data and support efficient retrieval of the nearest neighbors in high dimensional object spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baeza-Yates, R., Cunto, W., Manber, U., Wu, S.: Proximity matching using Fixed-queries trees. In: Crochemore, M., Gusfield, D. (eds.) CPM 1994. LNCS, vol. 807, pp. 198–212. Springer, Heidelberg (1994)

    Google Scholar 

  2. Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S.: Clustering on hyperspheres using Expectation Maximization. Technical Report TR-03-07, Department of Computer Sciences, University of Texas (February 2003)

    Google Scholar 

  3. Bilmes, J.A.: A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Technical Report, U.C. Berkeley (April 1998)

    Google Scholar 

  4. Boccignone, G., Chianese, A., Moscato, V., Picariello, A.: Fovaeted Shot Detection for Video Segmentation. IEEE Trans. on Circuits and Sistems for Video Technology 15(3) (March 2005)

    Google Scholar 

  5. Brin, S.: Near neighbor search in large metric spaces. In: Proc. of VLDB 1995, Switzerland, pp. 574–584 (1995)

    Google Scholar 

  6. Burkhard, W.A., Keller, R.M.: Some approaches to best-match file searching. Comm. of the ACM 16(4), 230–236 (1973)

    Article  MATH  Google Scholar 

  7. Celeux, G., Govaert, G.: A classification EM algorithm for clustering and two stochastic versions. Computational Statistics and Data Analysis 14, 315–332 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chavez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.L.: Searching in Metric Spaces. ACM Computing Surveys (1999)

    Google Scholar 

  9. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient Access Method for Similarity Search in Metric Spaces. In: Proc. of 23rd International Conference on VLDB, pp. 426–435 (1997) FQ tree 0..5825 FQ tree (with bag distance) 0.4124

    Google Scholar 

  10. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data. Journal of the Royal Statistical Society 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  11. Ganti, V., Ramakrishnan, R., Gehrke, J., Powell, A., French, J.: Clustering large datasets in arbitrary metric spaces. In: The Proceedings of International Conference on Data Engineering (1999)

    Google Scholar 

  12. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1998)

    Google Scholar 

  13. Kalantari, I., McDonald, G.: A data structure and an algorithm for the nearest point problem. IEEE Transactions on Software Engineering 9(5) (1983)

    Google Scholar 

  14. Neal, R.M., Hinton, G.E.: A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Jordan, M.J. (ed.) Learning in Graphical Models, pp. 355–368. MIT Press, Cambridge (1998)

    Google Scholar 

  15. Uhlmann, J.: Satisying general proximity/similarity queries with metric trees. Information Processing Letters 40, 175–179 (1991)

    Article  MATH  Google Scholar 

  16. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms, January 25-27, pp. 311–321 (1993)

    Google Scholar 

  17. Yu, D., Zhang, A.: ClusterTree: Integration of Cluster Representation and Nearest-Neighbor Search for Large Data Sets with High Dimensions. IEEE Trans. on KDE 15(5), 1316–1330 (2003)

    MathSciNet  Google Scholar 

  18. Zhong, S., Ghosh, J.: A Unified Framework for Model-based Clustering. Journal of Machine Learning Research 4, 1001–1037 (2003)

    Article  MathSciNet  Google Scholar 

  19. Wu, J.-K.: Content-Based Indexing of Multimedia Databases. IEEE Transactions on Knowledge and Data Engineering 9(6) (1997)

    Google Scholar 

  20. Bohm, C., Berchtold, S., Keim, D.A.: Searching in High-Dimensional Spaces-Index Structures for Improving the Performance of Multimedia Databases. ACM Computing Surveys 33(3) (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boccignone, G., Caggiano, V., Cesarano, C., Moscato, V., Sansone, L. (2005). An Indexing Approach for Representing Multimedia Objects in High-Dimensional Spaces Based on Expectation Maximization Algorithm. In: Candan, K.S., Celentano, A. (eds) Advances in Multimedia Information Systems. MIS 2005. Lecture Notes in Computer Science, vol 3665. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11551898_8

Download citation

  • DOI: https://doi.org/10.1007/11551898_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28792-6

  • Online ISBN: 978-3-540-31945-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics