[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Face Detection Using Convolutional Neural Networks and Gabor Filters

  • Conference paper
Artificial Neural Networks: Biological Inspirations – ICANN 2005 (ICANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3696))

Included in the following conference series:

  • 2051 Accesses

Abstract

This paper proposes a method for detecting facial regions by combining a Gabor filter and a convolutional neural network. The first stage uses the Gabor filter which extracts intrinsic facial features. As a result of this transformation we obtain four subimages. The second stage of the method concerns the application of the convolutional neural network to these four images. The approach presented in this paper yields better classification performance in comparison to the results obtained by the convolutional neural network alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adini, Y., Moses, Y., Ullman, S.: Face recognition: The problem of compensating for changes in illumination direction. IEEE Trans. on Patt. Anal. Mach. Intell. 19(7), 721–731 (1997)

    Article  Google Scholar 

  2. Garcia, C., Delakis, M.: A neural architecture for fast and robust face detection. Int. Conf. on Pattern Recognition, 44–47 (2002)

    Google Scholar 

  3. Jones, J., Palmer, L.: An evaluation of the two dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology 58, 1233–1258 (1987)

    Google Scholar 

  4. Kwolek, B.: Stereovision–based head tracking using color and ellipse fitting in a particle filter. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 192–204. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Lawrence, S., Giles, C.L., Tsoi, A., Back, A.: Face recognition: A convolutional neural network approach. IEEE Trans. on Neural Networks 8(1), 98–113 (1997)

    Article  Google Scholar 

  6. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time-series. In: Arbib, M.A. (ed.) The handbook of brain theory and neural networks. MIT Press, Cambridge (1995)

    Google Scholar 

  7. Rowley, H.A., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Trans. on Patt. Anal. Mach. Intell. 20(1), 23–38 (1998)

    Article  Google Scholar 

  8. Sung, K.K., Poggio, T.: Example based learning for view-based human face detection. IEEE Trans. on Patt. Anal. Mach. Intell. 20(1), 39–50 (1998)

    Article  Google Scholar 

  9. Yang, M.-H., Kriegman, D., Ahuja, N.: Detecting faces in images: A survey. IEEE Trans. on Patt. Anal. Mach. Intell. 24(1), 34–58 (2002)

    Article  Google Scholar 

  10. Zhang, J., Yan, Y., Lades, M.: Face recognition: Eigenface, elastic matching, and neural nets. Proc. of IEEE 85, 423–435 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kwolek, B. (2005). Face Detection Using Convolutional Neural Networks and Gabor Filters. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550822_86

Download citation

  • DOI: https://doi.org/10.1007/11550822_86

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28752-0

  • Online ISBN: 978-3-540-28754-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics