Abstract
This paper focuses on a rough set method to analyze human evaluation data with much ambiguity such as sensory and feeling data. In order to handle totally ambiguous and probabilistic human evaluation data, we propose a probabilistic approximation based on information gains of equivalent classes. Furthermore, we propose a two-stage method to simply extract uncertain if–then rules using decision functions of approximate regions. Finally, we applied the proposed method to practical human sensory evaluation data and examined the effectiveness of the proposed method. The result shown that our proposed rough set method is more applicable to human evaluation data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46, 39–59 (1993)
Pawlak, Z.: Decision rules, Bayes’ rule and rough sets. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 1–9. Springer, Heidelberg (1999)
Ślȩzak, D., Ziarko, W.: Variable precision Bayesian rough set model. In: RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 312–315. Springer, Heidelberg (2003)
Ślȩzak, D., Ziarko, W.: The investigation of the Bayesian rough set model. Int. J. of Approximate Reasoning (in press)
Ślȩzak, D.: The Rough Bayesian Model for Distributed Decision Systems. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 384–393. Springer, Heidelberg (2004)
Tsumoto, S.: Discovery of rules about complication. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 29–37. Springer, Heidelberg (1999)
Nishino, T., Nagamachi, M.: Extraction of Design Rules for Basic Product Designing Using Rough Set Analysis. In: Proceedings of 14th Triennial Congress of the International Ergonomics Association, vol. 3, pp. 515–518 (2003)
Nagamachi, M.: Introduction to Kansei Engineering, Japan Standard Association (1996) (in Japanese)
Mori, N., Tanaka, H., Inoue, K. (eds.): Rough Sets and Kansei, Kaibundo (2004) (in Japanese)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, pp. 440–447. Springer, Heidelberg (2001)
Stepaniuk, J.: Knowledge Discovery by Application of Rough Set Models. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications, pp. 137–233. Physica, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nishino, T., Nagamachi, M., Tanaka, H. (2005). Variable Precision Bayesian Rough Set Model and Its Application to Human Evaluation Data. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3641. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548669_31
Download citation
DOI: https://doi.org/10.1007/11548669_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28653-0
Online ISBN: 978-3-540-31825-5
eBook Packages: Computer ScienceComputer Science (R0)