[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Variable Precision Bayesian Rough Set Model and Its Application to Human Evaluation Data

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3641))

Abstract

This paper focuses on a rough set method to analyze human evaluation data with much ambiguity such as sensory and feeling data. In order to handle totally ambiguous and probabilistic human evaluation data, we propose a probabilistic approximation based on information gains of equivalent classes. Furthermore, we propose a two-stage method to simply extract uncertain ifthen rules using decision functions of approximate regions. Finally, we applied the proposed method to practical human sensory evaluation data and examined the effectiveness of the proposed method. The result shown that our proposed rough set method is more applicable to human evaluation data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46, 39–59 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Pawlak, Z.: Decision rules, Bayes’ rule and rough sets. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 1–9. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Ślȩzak, D., Ziarko, W.: Variable precision Bayesian rough set model. In: RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 312–315. Springer, Heidelberg (2003)

    Google Scholar 

  4. Ślȩzak, D., Ziarko, W.: The investigation of the Bayesian rough set model. Int. J. of Approximate Reasoning (in press)

    Google Scholar 

  5. Ślȩzak, D.: The Rough Bayesian Model for Distributed Decision Systems. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 384–393. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Tsumoto, S.: Discovery of rules about complication. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 29–37. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Nishino, T., Nagamachi, M.: Extraction of Design Rules for Basic Product Designing Using Rough Set Analysis. In: Proceedings of 14th Triennial Congress of the International Ergonomics Association, vol. 3, pp. 515–518 (2003)

    Google Scholar 

  8. Nagamachi, M.: Introduction to Kansei Engineering, Japan Standard Association (1996) (in Japanese)

    Google Scholar 

  9. Mori, N., Tanaka, H., Inoue, K. (eds.): Rough Sets and Kansei, Kaibundo (2004) (in Japanese)

    Google Scholar 

  10. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, pp. 440–447. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  11. Stepaniuk, J.: Knowledge Discovery by Application of Rough Set Models. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications, pp. 137–233. Physica, Heidelberg (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nishino, T., Nagamachi, M., Tanaka, H. (2005). Variable Precision Bayesian Rough Set Model and Its Application to Human Evaluation Data. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3641. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548669_31

Download citation

  • DOI: https://doi.org/10.1007/11548669_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28653-0

  • Online ISBN: 978-3-540-31825-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics