Abstract
Rough Set Theory is a mathematical tool to deal with vagueness and uncertainty. Rough Set Theory uses a single information table. Relational Learning is the learning from multiple relations or tables. This paper studies the use of Rough Set Theory and Variable Precision Rough Sets in a multi-table information system (MTIS). The notion of approximation regions in the MTIS is defined in terms of those of the individual tables. This is used in classifying an example in the MTIS, based on the elementary sets in the individual tables to which the example belongs. Results of classification experiments in predictive toxicology based on this approach are presented.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)
Pawlak, Z.: Rough Sets — Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Pawlak, Z., Grzymala-Busse, J., Slowinski, R., Ziarko, W.: Rough sets. Communications of ACM 38(11), 89–95 (1995)
Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: A tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98. Springer, Heidelberg (1999)
Muggleton, S.: Inductive logic programming. New Generation Computing 8, 295–318 (1991)
Muggleton, S.: Scientific knowledge discovery through inductive logic programming. Communications of the ACM 42, 43–46 (1999)
Milton, R.S., Uma Maheswari, V., Siromoney, A.: Rough Sets and Relational Learning. LNCS Transactions on Rough Sets Inaugural (2004)
Siromoney, A.: A rough set perspective of Inductive Logic Programming. In: Raedt, L.D., Muggleton, S. (eds.) Proceedings of the IJCAI 1997 Workshop on Frontiers of Inductive Logic Programming, Nagoya, Japan, pp. 111–113 (1997)
Siromoney, A., Inoue, K.: The generic Rough Set Inductive Logic Programming (gRS–ILP) model. In: Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds.) Data Mining, Rough Sets and Granular Computing, vol. 95, pp. 499–517. Physica, Heidelberg (2002)
Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46, 39–59 (1993)
Uma Maheswari, V., Siromoney, A., Mehata, K.M., Inoue, K.: The Variable Precision Rough Set Inductive Logic Programming Model and Strings. Computational Intelligence 17, 460–471 (2001)
Milton, R.S., Uma Maheswari, V., Siromoney, A.: The Variable Precision Rough Set Inductive Logic Programming model — a Statistical Relational Learning perspective. In: Workshop on Learning Statistical Models from Relational Data (SRL 2003), IJCAI 2003 (2003)
Wroblewski, J.: Analyzing relational databases using rough set based methods. In: Proceedings of IPMU 2000, vol. 1, pp. 256–262 (2000)
Ziarko, W.: Set approximation quality measures in the variable precision rough set model. In: Proc. of 2nd Intl. Conference on Hybrid Intelligent Systems, Santiago, Chile (2002)
Muggleton, S.: Inverse entailment and Progol. New Generation Computing 13, 245–286 (1995)
Srinivasan, A., King, R., Muggleton, S., Sternberg, M.: The predictive toxicology evaluation challenge. In: Proceedings of the Fifteenth International Joint Conference Artificial Intelligence (IJCAI 1997), pp. 1–6. Morgan Kaufmann, San Francisco (1997)
Srinivasan, A., King, R., Muggleton, S., Sternberg, M.: Carcinogenesis predictions using ILP. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS (LNAI), vol. 1297, pp. 273–287. Springer, Heidelberg (1997)
Milton, R.S., Uma Maheswari, V., Siromoney, A.: Rough Relational Learning in Predictive Toxicology. In: International Workshop on Knowledge Discovery in BioMedicine (KDbM 2004), PRICAI 2004 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Milton, R.S., Maheswari, V.U., Siromoney, A. (2005). Studies on Rough Sets in Multiple Tables. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3641. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548669_28
Download citation
DOI: https://doi.org/10.1007/11548669_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28653-0
Online ISBN: 978-3-540-31825-5
eBook Packages: Computer ScienceComputer Science (R0)