[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Studies on Rough Sets in Multiple Tables

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2005)

Abstract

Rough Set Theory is a mathematical tool to deal with vagueness and uncertainty. Rough Set Theory uses a single information table. Relational Learning is the learning from multiple relations or tables. This paper studies the use of Rough Set Theory and Variable Precision Rough Sets in a multi-table information system (MTIS). The notion of approximation regions in the MTIS is defined in terms of those of the individual tables. This is used in classifying an example in the MTIS, based on the elementary sets in the individual tables to which the example belongs. Results of classification experiments in predictive toxicology based on this approach are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Pawlak, Z.: Rough Sets — Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  3. Pawlak, Z., Grzymala-Busse, J., Slowinski, R., Ziarko, W.: Rough sets. Communications of ACM 38(11), 89–95 (1995)

    Article  Google Scholar 

  4. Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: A tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98. Springer, Heidelberg (1999)

    Google Scholar 

  5. Muggleton, S.: Inductive logic programming. New Generation Computing 8, 295–318 (1991)

    Article  MATH  Google Scholar 

  6. Muggleton, S.: Scientific knowledge discovery through inductive logic programming. Communications of the ACM 42, 43–46 (1999)

    Article  Google Scholar 

  7. Milton, R.S., Uma Maheswari, V., Siromoney, A.: Rough Sets and Relational Learning. LNCS Transactions on Rough Sets Inaugural (2004)

    Google Scholar 

  8. Siromoney, A.: A rough set perspective of Inductive Logic Programming. In: Raedt, L.D., Muggleton, S. (eds.) Proceedings of the IJCAI 1997 Workshop on Frontiers of Inductive Logic Programming, Nagoya, Japan, pp. 111–113 (1997)

    Google Scholar 

  9. Siromoney, A., Inoue, K.: The generic Rough Set Inductive Logic Programming (gRS–ILP) model. In: Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds.) Data Mining, Rough Sets and Granular Computing, vol. 95, pp. 499–517. Physica, Heidelberg (2002)

    Google Scholar 

  10. Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46, 39–59 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Uma Maheswari, V., Siromoney, A., Mehata, K.M., Inoue, K.: The Variable Precision Rough Set Inductive Logic Programming Model and Strings. Computational Intelligence 17, 460–471 (2001)

    Article  Google Scholar 

  12. Milton, R.S., Uma Maheswari, V., Siromoney, A.: The Variable Precision Rough Set Inductive Logic Programming model — a Statistical Relational Learning perspective. In: Workshop on Learning Statistical Models from Relational Data (SRL 2003), IJCAI 2003 (2003)

    Google Scholar 

  13. Wroblewski, J.: Analyzing relational databases using rough set based methods. In: Proceedings of IPMU 2000, vol. 1, pp. 256–262 (2000)

    Google Scholar 

  14. Ziarko, W.: Set approximation quality measures in the variable precision rough set model. In: Proc. of 2nd Intl. Conference on Hybrid Intelligent Systems, Santiago, Chile (2002)

    Google Scholar 

  15. Muggleton, S.: Inverse entailment and Progol. New Generation Computing 13, 245–286 (1995)

    Article  Google Scholar 

  16. Srinivasan, A., King, R., Muggleton, S., Sternberg, M.: The predictive toxicology evaluation challenge. In: Proceedings of the Fifteenth International Joint Conference Artificial Intelligence (IJCAI 1997), pp. 1–6. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  17. Srinivasan, A., King, R., Muggleton, S., Sternberg, M.: Carcinogenesis predictions using ILP. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS (LNAI), vol. 1297, pp. 273–287. Springer, Heidelberg (1997)

    Google Scholar 

  18. Milton, R.S., Uma Maheswari, V., Siromoney, A.: Rough Relational Learning in Predictive Toxicology. In: International Workshop on Knowledge Discovery in BioMedicine (KDbM 2004), PRICAI 2004 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Milton, R.S., Maheswari, V.U., Siromoney, A. (2005). Studies on Rough Sets in Multiple Tables. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3641. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548669_28

Download citation

  • DOI: https://doi.org/10.1007/11548669_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28653-0

  • Online ISBN: 978-3-540-31825-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics