[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Feature Selection Based on Relative Attribute Dependency: An Experimental Study

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2005)

Abstract

Most existing rough set-based feature selection algorithms suffer from intensive computation of either discernibility functions or positive regions to find attribute reduct. In this paper, we develop a new computation model based on relative attribute dependency that is defined as the proportion of the projection of the decision table on a subset of condition attributes to the projection of the decision table on the union of the subset of condition attributes and the set of decision attributes. To find an optimal reduct, we use information entropy conveyed by the attributes as the heuristic. A novel algorithm to find optimal reducts of condition attributes based on the relative attribute dependency is implemented using Java, and is experimented with 10 data sets from UCI Machine Learning Repository. We conduct the comparison of data classification using C4.5 with the original data sets and their reducts. The experiment results demonstrate the usefulness of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Almuallim, H., Dietterich, T.G.: Learning Boolean concepts in the presence of many irrelevant features. Artificial Intelligence 69(1-2), 279–305 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. Irvine, CA: University of California, Department of Information and Computer Science (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  3. Han, J., Hu, X., Lin, T.Y.: A New Computation Model for Rough Set Theory Based on Database Systems. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 381–390. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Han, J., Hu, X., Lin, T.Y.: Feature Subset Selection Based on Relative Dependency Between Attributes. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 176–185. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Grzymala-Busse, J.W.: LERS - A system for learning from examples based on rough sets. In: Slowinski, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory, pp. 3–18. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  6. Grzymala-Busse, J.W.: A Comparison of Three Strategies to Rule Induction. In: Proc. of the International Workshop on Rough Sets in Knowledge Discovery, Warsaw, Poland, April 5-13, pp. 132–140 (2003)

    Google Scholar 

  7. Kira, K., Rendell, L.A.: The Feature Selection Problem: Traditional Methods and a new Algorithm. In: 9th National Conference on Artificial Intelligence (AAAI), pp. 129–134 (1992)

    Google Scholar 

  8. Lin, T.Y., Cercone, N.: Applications of Rough Sets Theory and Data Mining. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  9. Lin, T.Y., Yin, P.: Heuristically Fast Finding of the Shortest Reducts. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 465–470. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Liu, H., Setiono, R.: Chi2: Feature Selection and Discretization of Numeric Attributes. In: 7th IEEE International Conference on Tools with Artificial Intelligence (1995)

    Google Scholar 

  11. Modrzejewski, M.: Feature Selection Using Rough Sets Theory. In: European Conference on Machine Learning, pp. 213–226 (1993)

    Google Scholar 

  12. Nguyen, H., Nguyen, S.: Some efficient algorithms for rough set methods. In: IPMU, pp. 1451–1456 (1996)

    Google Scholar 

  13. Pagallo, G., Haussler, D.: Boolean Feature Discovery in Empirical Learning. Machine Learning 5, 71–99 (1990)

    Article  Google Scholar 

  14. Pawlak, Z.: Rough Sets. International Journal of Information and Computer Science 11(5), 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  16. Quafafou, M., Boussouf, M.: Generalized Rough Sets Based Feature Selection. Intelligent Data Analysis 4, 3–17 (2000)

    MATH  Google Scholar 

  17. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  18. Sever, H., Raghavan, V., Johnsten, D.T.: The Status of Research on Rough Sets for Knowledge Discovery in Databases. In: 2nd International Conference on Nonlinear Problems in Aviation and Aerospace, vol. 2, pp. 673–680 (1998)

    Google Scholar 

  19. Shen, Q., Chouchoulas, A.: A Rough-fuzzy Approach for Generating Classification Rules. Pattern Recognition 35, 2425–2438 (2002)

    Article  MATH  Google Scholar 

  20. Zhang, J., Wang, J., Li, D., He, H., Sun, J.: A New Heuristic Reduct Algorithm Based on Rough Sets Theory. In: Dong, G., Tang, C., Wang, W. (eds.) WAIM 2003. LNCS, vol. 2762, pp. 247–253. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Zhang, M., Yao, J.: A Rough Set based Approach ro Feature Selection. In: Proc. IEEE Annual Meeting of Fuzzy Information NAFIP, pp. 434–439 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Han, J., Sanchez, R., Hu, X. (2005). Feature Selection Based on Relative Attribute Dependency: An Experimental Study. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3641. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548669_23

Download citation

  • DOI: https://doi.org/10.1007/11548669_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28653-0

  • Online ISBN: 978-3-540-31825-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics