[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Permutation-Based Genetic Algorithm for Predicting RNA Secondary Structure—A Practicable Approach

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3614))

Included in the following conference series:

Abstract

The paper presents a permutation-based algorithm for predicting RNA secondary structure. It is practicable, and can be used to predict real RNA molecules. The conception of permutation is introduced, which is the start point of our algorithm. Individual is represented as a permutation of stem list. Crossover operator, mutation operator, and selection strategy are designed to be compatible with such an individual representation. At the end of the paper, a comparison between our result and that from RNAstructure is outlined. It is proved that our algorithm has achieved comparable or better result than RNAstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148 (1981)

    Article  Google Scholar 

  2. Gultyaev, A.P., Van Batenburg, F.H.D., Pleij, C.W.A.: The computer simulation of RNA folding pathways using a genetic algorithm. J. Mol. Biol. 250, 37–51 (1995)

    Article  Google Scholar 

  3. Wiese, K.C., Glen, E.: A Permutation Based Genetic Algorithm for the RNA Folding Problem: A Critical Look at Selection Strategies, Crossover Operators and Representation Issues. BioSystems-Special Issue on Computational Intelligence in Bioinformatics (2003)

    Google Scholar 

  4. Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999)

    Article  Google Scholar 

  5. Wiese, K.C., Goodwin, S.D.: Keep-Best Reproduction: A Local Family Competition Selection Strategy and the Environment it Flourishes in. Constraints 6, 399–422 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhan, Y., Guo, M. (2005). A Permutation-Based Genetic Algorithm for Predicting RNA Secondary Structure—A Practicable Approach. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3614. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11540007_107

Download citation

  • DOI: https://doi.org/10.1007/11540007_107

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28331-7

  • Online ISBN: 978-3-540-31828-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics