[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Prediction of Protein Subcellular Locations Using Support Vector Machines

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3610))

Included in the following conference series:

  • 1971 Accesses

Abstract

In this paper,we constructed a data set of rice proteins with known locations from SWISS-PROT,using the Support Vector Machine to predicte the type of a given rice protein by incorporating sequence information with physics chemistry property of amino acid. Results are assessed through 5-fold cross-validation tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kumar, A., Agarwal, S., Heyman, J.A., Matson, S., Heidtman, M., Piccirillo, S., Umansky, L., Drawid, A., Jansen, R., Liu, Y., et al.: Subcellular localization of the yeast proteome. Genes. Dev. 16, 707–719 (2002)

    Article  Google Scholar 

  2. Reinhardt, A., Hubbard, T.: Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Res. 26, 2230–2236 (1998)

    Article  Google Scholar 

  3. Hua, S., Sun, Z.: Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17, 721–728 (2001), http://www.bioinfo.tsinghua.edu.cn/SubLoc/

    Article  Google Scholar 

  4. Emanuelsson, O., Nielson, H., Brunak, S., von Heijne, G.: Predicting subcellular localization of proteins based on their Nterminal amino acid sequence. J. Mol. Biol. 300, 1005–1016 (2000)

    Article  Google Scholar 

  5. Nair, R., Rost, B.: Inferring subcellular localization through automated lexical analysis. Bioinformatics 18, S78–S86 (2002)

    Google Scholar 

  6. Chou, K.C.: Prediction of protein subcellular locations by incorporating quasi-sequence-order effect. Biochem. Biophys. Res. Commun. 278, 477–483 (2000a)

    Article  Google Scholar 

  7. Chou, K.C.: Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins Struct. Funct. Genet. 43, 246–255 (2001)

    Article  Google Scholar 

  8. Cai, Y.D., Liu, X.J., Xu, X.B., Chou, K.C.: Support vector machines for prediction of protein subcellular location by incorporating quasi-sequence-order effect. J. Cell. Biochem. 84, 343–348 (2002)

    Article  Google Scholar 

  9. Wang, H.C.: Essentials of Sequence Analysis. Press of Military Medical, Beijing (1994) (Ch)

    Google Scholar 

  10. Guruprasad, K., Reddy, B.V., Pandit, M.W.: Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. 4, 155–161 (1990)

    Article  Google Scholar 

  11. http://www.genome.ad.jp/dbget/AAindex/

  12. Vapnik, V.: Statistical Learning Theory. Wiley-Interscience, New York (1998)

    MATH  Google Scholar 

  13. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20, 273–293 (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Nn., Niu, Xh., Shi, F., Li, Xy. (2005). Prediction of Protein Subcellular Locations Using Support Vector Machines. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539087_140

Download citation

  • DOI: https://doi.org/10.1007/11539087_140

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28323-2

  • Online ISBN: 978-3-540-31853-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics