[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Genetic Algorithm for Multi-objective Optimization Using GDEA

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3612))

Included in the following conference series:

Abstract

Recently, many genetic algorithms (GAs) have been developed as an approximate method to generate Pareto frontier (the set of Pareto optimal solutions) to multi-objective optimization problem. In multi-objective GAs, there are two important problems : how to assign a fitness for each individual, and how to make the diversified individuals. In order to overcome those problems, this paper suggests a new multi-objective GA using generalized data envelopment analysis (GDEA). Through numerical examples, the paper shows that the proposed method using GDEA can generate well-distributed as well as well-approximated Pareto frontiers with less number of function evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arakawa, M., Nakayama, H., Hagiwara, I., Yamakawa, H.: Multiobjective Optimization Using Adaptive Range Genetic Algorithms with Data Envelopment Analysis. In: A Collection of Technical Papers on 7th Symposium on Multidisciplinary Analysis and Optimization (TP98-4970), AIAA, vol. 3, pp. 2074–2082 (1998)

    Google Scholar 

  2. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  3. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John & Wiley Sons, Ltd., Chichester (2001)

    MATH  Google Scholar 

  4. Deb, K., Agarwal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II. In: Proceedings of 6th International Conference on Parallel Problem Solving from Nature, pp. 849–858 (2000)

    Google Scholar 

  5. Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multi-objective Optimization: Formulation, Discussion and Generalization. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–426 (1993)

    Google Scholar 

  6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Inc., Massachusetts (1989)

    MATH  Google Scholar 

  7. Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100 (1985)

    Google Scholar 

  8. Srinivas, N., Deb, K.: Multi-Objective Function Optimization using Non-Dominated Sorting Genetic Algorithms. Evolutionary Computation 3, 221–248 (1995)

    Google Scholar 

  9. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Result. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  10. Yun, Y.B., Nakayama, H., Tanino, T., Arakawa, M.: Generation of efficient frontiers in multi-objective optimization problems by generalized data envelopment analysis. European Journal of Operational Research 129(3), 586–595 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Yun, Y.B., Nakayama, H., Tanino, T.: A generalized model for data envelopment analysis. European Journal of Operational Research 157(1), 87–105 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Yun, Y.B., Nakayama, H., Arakawa, M.: Multiple criteria decision making with generalized DEA and an aspiration level method. European Journal of Operational Research 158(1), 697–706 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yun, Y., Yoon, M., Nakayama, H. (2005). Genetic Algorithm for Multi-objective Optimization Using GDEA. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3612. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539902_49

Download citation

  • DOI: https://doi.org/10.1007/11539902_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28320-1

  • Online ISBN: 978-3-540-31863-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics