[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Semantic Formulation of ⊤ ⊤-Lifting and Logical Predicates for Computational Metalanguage

  • Conference paper
Computer Science Logic (CSL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3634))

Included in the following conference series:

Abstract

A semantic formulation of Lindley and Stark’s ⊤ ⊤-lifting is given. We first illustrate our semantic formulation of the ⊤ ⊤-lifting in Set with several examples, and apply it to the logical predicates for Moggi’s computational metalanguage. We then abstract the semantic ⊤ ⊤-lifting as the lifting of strong monads across bifibrations with lifted symmetric monoidal closed structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abadi, M.: TT-closed relations and admissibility. MSCS 10(3), 313–320 (2000)

    MATH  MathSciNet  Google Scholar 

  2. Amadio, R., Curien, P.-L.: Domains and Lambda-Calculi. Cambridge Tracts in Theoretical Computer Science, vol. 46. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  3. G.-Larrecq, J., Lasota, S., Nowak, D.: Logical relations for monadic types. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 553–568. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Girard, J.Y.: Linear logic. Theor. Comp. Sci. 50, 1–102 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hasegawa, M.: Categorical glueing and logical predicates for models of linear logic. Technical Report RIMS-1223, Research Institute for Mathematical Sciences, Kyoto University (1999)

    Google Scholar 

  6. Hermida, C.: Fibrations, Logical Predicates and Indeterminants. PhD thesis, University of Edinburgh (1993)

    Google Scholar 

  7. Jacobs, B.: Categorical Logic and Type Theory. Elsevier, Amsterdam (1999)

    MATH  Google Scholar 

  8. Johann, P.: Short cut fusion is correct. J. Funct. Program. 13(4), 797–814 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jung, A., Tiuryn, J.: A new characterization of lambda definability. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 245–257. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  10. Kock, A.: Strong functors and monoidal monads. Archiv der Mathematik 23, 113–120 (1970)

    Article  MathSciNet  Google Scholar 

  11. Lindley, S.: Normalisation by Evaluation in the Compilation of Typed Functional Programming Languages. PhD thesis, University of Edinburgh (2004)

    Google Scholar 

  12. Lindley, S., Stark, I.: Reducibility and TT-lifting for computation types. In: TLCA, pp. 262–277 (2005)

    Google Scholar 

  13. Ma, Q., Reynolds, J.: Types, abstractions, and parametric polymorphism, part 2. In: Schmidt, D., Main, M.G., Melton, A.C., Mislove, M.W., Brookes, S.D. (eds.) MFPS 1991. LNCS, vol. 598, pp. 1–40. Springer, Heidelberg (1992)

    Google Scholar 

  14. MacLane, S.: Categories for theWorking Mathematician, 2nd edn. Graduate Texts in Mathematics, vol. 5. Springer, Heidelberg (1998)

    Google Scholar 

  15. Melliès, P.-A., Vouillon, J.: Recursive polymorphic types and parametricity in an operational framework. In: Proc. LICS 2005 (2005) (to appear)

    Google Scholar 

  16. Mitchell, J.: Representation independence and data abstraction. In: Proc. POPL, pp. 263–276 (1986)

    Google Scholar 

  17. Mitchell, J., Scedrov, A.: Notes on sconing and relators. In: Martini, S., Börger, E., Kleine Büning, H., Jäger, G., Richter, M.M. (eds.) CSL 1992. LNCS, vol. 702, pp. 352–378. Springer, Heidelberg (1993)

    Google Scholar 

  18. Moggi, E.: Notions of computation and monads. Information and Computation 93(1), 55–92 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nishimura, S.: Correctness of a higher-order removal transformation through a relational reasoning. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 358–375. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Parigot, M.: Proofs of strong normalisation for second order classical natural deduction. Journal of Symbolic Logic 62(4), 1461–1479 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pitts, A.: Parametric polymorphism and operational equivalence. Mathematical Structures in Computer Science 10(3), 321–359 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pitts, A., Stark, I.: Operational reasoning for functions with local state. In: Gordon, A.D., Pitts, A.M. (eds.) Higher Order Operational Techniques in Semantics, Publications of the Newton Institute, pp. 227–273. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  23. Plotkin, G.: Lambda-definability in the full type hierarchy. In: To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 367–373. Academic Press, San Diego (1980)

    Google Scholar 

  24. Tait, W.: Intensional interpretation of functionals of finite type I. Journal of Symbolic Logic 32 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Katsumata, Sy. (2005). A Semantic Formulation of ⊤ ⊤-Lifting and Logical Predicates for Computational Metalanguage. In: Ong, L. (eds) Computer Science Logic. CSL 2005. Lecture Notes in Computer Science, vol 3634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538363_8

Download citation

  • DOI: https://doi.org/10.1007/11538363_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28231-0

  • Online ISBN: 978-3-540-31897-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics