Abstract
A semantic formulation of Lindley and Stark’s ⊤ ⊤-lifting is given. We first illustrate our semantic formulation of the ⊤ ⊤-lifting in Set with several examples, and apply it to the logical predicates for Moggi’s computational metalanguage. We then abstract the semantic ⊤ ⊤-lifting as the lifting of strong monads across bifibrations with lifted symmetric monoidal closed structures.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abadi, M.: TT-closed relations and admissibility. MSCS 10(3), 313–320 (2000)
Amadio, R., Curien, P.-L.: Domains and Lambda-Calculi. Cambridge Tracts in Theoretical Computer Science, vol. 46. Cambridge University Press, Cambridge (1998)
G.-Larrecq, J., Lasota, S., Nowak, D.: Logical relations for monadic types. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 553–568. Springer, Heidelberg (2002)
Girard, J.Y.: Linear logic. Theor. Comp. Sci. 50, 1–102 (1987)
Hasegawa, M.: Categorical glueing and logical predicates for models of linear logic. Technical Report RIMS-1223, Research Institute for Mathematical Sciences, Kyoto University (1999)
Hermida, C.: Fibrations, Logical Predicates and Indeterminants. PhD thesis, University of Edinburgh (1993)
Jacobs, B.: Categorical Logic and Type Theory. Elsevier, Amsterdam (1999)
Johann, P.: Short cut fusion is correct. J. Funct. Program. 13(4), 797–814 (2003)
Jung, A., Tiuryn, J.: A new characterization of lambda definability. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 245–257. Springer, Heidelberg (1993)
Kock, A.: Strong functors and monoidal monads. Archiv der Mathematik 23, 113–120 (1970)
Lindley, S.: Normalisation by Evaluation in the Compilation of Typed Functional Programming Languages. PhD thesis, University of Edinburgh (2004)
Lindley, S., Stark, I.: Reducibility and TT-lifting for computation types. In: TLCA, pp. 262–277 (2005)
Ma, Q., Reynolds, J.: Types, abstractions, and parametric polymorphism, part 2. In: Schmidt, D., Main, M.G., Melton, A.C., Mislove, M.W., Brookes, S.D. (eds.) MFPS 1991. LNCS, vol. 598, pp. 1–40. Springer, Heidelberg (1992)
MacLane, S.: Categories for theWorking Mathematician, 2nd edn. Graduate Texts in Mathematics, vol. 5. Springer, Heidelberg (1998)
Melliès, P.-A., Vouillon, J.: Recursive polymorphic types and parametricity in an operational framework. In: Proc. LICS 2005 (2005) (to appear)
Mitchell, J.: Representation independence and data abstraction. In: Proc. POPL, pp. 263–276 (1986)
Mitchell, J., Scedrov, A.: Notes on sconing and relators. In: Martini, S., Börger, E., Kleine Büning, H., Jäger, G., Richter, M.M. (eds.) CSL 1992. LNCS, vol. 702, pp. 352–378. Springer, Heidelberg (1993)
Moggi, E.: Notions of computation and monads. Information and Computation 93(1), 55–92 (1991)
Nishimura, S.: Correctness of a higher-order removal transformation through a relational reasoning. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 358–375. Springer, Heidelberg (2003)
Parigot, M.: Proofs of strong normalisation for second order classical natural deduction. Journal of Symbolic Logic 62(4), 1461–1479 (1997)
Pitts, A.: Parametric polymorphism and operational equivalence. Mathematical Structures in Computer Science 10(3), 321–359 (2000)
Pitts, A., Stark, I.: Operational reasoning for functions with local state. In: Gordon, A.D., Pitts, A.M. (eds.) Higher Order Operational Techniques in Semantics, Publications of the Newton Institute, pp. 227–273. Cambridge University Press, Cambridge (1998)
Plotkin, G.: Lambda-definability in the full type hierarchy. In: To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 367–373. Academic Press, San Diego (1980)
Tait, W.: Intensional interpretation of functionals of finite type I. Journal of Symbolic Logic 32 (1967)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Katsumata, Sy. (2005). A Semantic Formulation of ⊤ ⊤-Lifting and Logical Predicates for Computational Metalanguage. In: Ong, L. (eds) Computer Science Logic. CSL 2005. Lecture Notes in Computer Science, vol 3634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538363_8
Download citation
DOI: https://doi.org/10.1007/11538363_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28231-0
Online ISBN: 978-3-540-31897-2
eBook Packages: Computer ScienceComputer Science (R0)