[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Knowledge-Based Integrative Framework for Hypothesis Formation in Biochemical Networks

  • Conference paper
Data Integration in the Life Sciences (DILS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3615))

Included in the following conference series:

Abstract

The current knowledge about biochemical networks is largely incomplete. Thus biologists constantly need to revise or extend existing knowledge. These revision or extension are first formulated as theoretical hypotheses, then verified experimentally. Recently, biological data have been produced in great volumes and in diverse formats. It is a major challenge for biologists to process these data to reason about hypotheses. Many computer-aided systems have been developed to assist biologists in undertaking this challenge. The majority of the systems help in finding “pattern” in data and leave the reasoning to biologists. Few systems have tried to automate the reasoning process of hypothesis formation. These systems generate hypotheses from a knowledge base and given observations. A main drawback of these knowledge-based systems is the knowledge representation formalism they use. These formalisms are mostly monotonic and are now known to be not quite suitable for knowledge representation, especially in dealing with incomplete knowledge, which is often the case with respect to biochemical networks. We present a knowledge based framework for the general problem of hypothesis formation. The framework has been implemented by extending BioSigNet-RR. BioSigNet-RR is a knowledge based system that supports elaboration tolerant representation and non-monotonic reasoning. The main features of the extended system include: (1) seamless integration of hypothesis formation with knowledge representation and reasoning; (2) use of various resources of biological data as well as human expertise to intelligently generate hypotheses. The extended system can be considered as a prototype of an intelligent research assistant of molecular biologists. The system is available at http://www.biosignet.org.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shrager, J., Langley, P.: Computational Models of Scientific Discovery and Theory Formation. Morgan Kaufmann, San Francisco (1990)

    Google Scholar 

  2. Darden, L.: Recent work in computational scientific discovery. In: Proceedings of the Nineteenth Annual Conference of the Cognitive Science Society, pp. 161–166 (1997)

    Google Scholar 

  3. Karp, P.D.: Design methods for scientific hypothesis formation and their application to molecular biology. Machine Learning 12, 89–116 (1993)

    Google Scholar 

  4. Karp, P.D., Ouzounis, C., Paley, S.: HinCyc: A Knowledge Base of the Complete Genome and Metabolic Pathways of H. influenzae. In: Proc. of ISMB (1996)

    Google Scholar 

  5. Zupan, B., et al.: Genepath: a system for inference of genetic networks and proposal of genetic experiments. Artif. Intell. Med. 29, 107–130 (2003)

    Article  Google Scholar 

  6. Karp, P.D., Paley, S., Romero, P.: The pathway tools software. Bioinformatics 18 S225– 232, S225–S232 (2002)

    Google Scholar 

  7. Yaffe, M.B., Leparc, G.G., Lai, J., Obata, T., Volinia, S., Cantley, L.C.: A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat Biotechnol 19, 348–353 (2001)

    Article  Google Scholar 

  8. Gomez, S., Rzhetsky, A.: Towards the prediction of complete protein - protein interaction networks. In: Pacific Symposium on Biocomputing 2000 (PSB 2000), pp. 413–424 (2002)

    Google Scholar 

  9. Obenauer, J.C., Cantley, L.C., Yaffe, M.B.: Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Research 31, 3635–3641 (2003)

    Article  Google Scholar 

  10. Valencia, A., Pazos, F.: Computational methods for the prediction of protein interactions. Curr Opin Struct Biol 12, 368–373 (2003)

    Article  Google Scholar 

  11. Salwinski, L., Eisenberg, D.: Computational methods of analysis of proteinprotein interactions. Current Opinion in Structural Biology 13, 377–382 (2003)

    Article  Google Scholar 

  12. Baral, C.: Knowledge representation, reasoning and declarative problem solving. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  13. Baral, C., Chancellor, K., Tran, N., Tran, N., Berens, M.: A knowledge based approach for representing and reasoning about signaling networks. Bioinformatics 20(Suppl 1), i15–i22 (2004)

    Google Scholar 

  14. Sembugamoorthy, V., Chandrasekaran, B.: Functional Representation of Devices and Compilation of Diagnostic Problem-Solving Systems. Experience, Memory and Reasoning, 47–73 (1986)

    Google Scholar 

  15. Osterman, A., Overbeek, R.: Missing genes in metabolic pathways: a comparative genomics approach. Current Opinion in Chemical Biology 7, 238–251 (2003)

    Article  Google Scholar 

  16. Su, Z., Dam, P., Chen, X., Olman, V., Jiang, T., Palenik, B., Xu, Y.: Computational inference of regulatory pathways in microbes: an application to phosphorus assimilation pathways in synechococcus sp. wh8102. In: Gribskov, M., Kanehisa, M., Miyano, S., Takagi, T. (eds.) Genome Informatics, vol. 14, pp. 3–13 (2003)

    Google Scholar 

  17. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research 13, 2498–2504 (2003)

    Article  Google Scholar 

  18. Baliga, N.S., Bjork, S.J., Bonneau, R., Pan, M., Iloanusi, C., Kottemann, M.C., Hood, L., DiRuggiero, J.: Systems Level Insights Into the Stress Response to UV Radiation in the Halophilic Archaeon Halobacterium NRC-1. Genome Res 14, 1025–1035 (2004)

    Article  Google Scholar 

  19. Racunas, S.A., Shah, N.H., Albert, I., Fedoroff, N.V.: HyBrow: a prototype system for computer-aided hypothesis evaluation. Bioinformatics 20, i257–264 (2004)

    Google Scholar 

  20. King, R., et al.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004)

    Article  Google Scholar 

  21. Tran, N., Baral, C.: Reasoning about triggered actions in AnsProlog and its application to molecular interactions in cells. In: Proc. of KR 2004, pp. 554–563 (2004)

    Google Scholar 

  22. Peirce, C.: Collected papers of Charles Sanders Peirce, vol. 1-8, pp. 1931–1958. Havard University Press, Cambridge

    Google Scholar 

  23. Peirce, C.: Reasoning and the Logic of Things. Havard University Press, Cambridge (1992)

    Google Scholar 

  24. Poole, D., Mackworth, A., Goebel, R.: Computational Intelligence. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  25. Kakas, A., Kowalski, R., Toni, F.: The role of abduction in logic programming. Handbook of logic in Artificial Intelligence and Logic Programming, 235–324 (1998)

    Google Scholar 

  26. Kakas, A.C., Van Nuffelen, B., Denecker, M.: A-system: Problem solving through abduction. In: Proc. of the IJCAI, vol. 1, pp. 591–596 (2001)

    Google Scholar 

  27. Denecker, M., Kakas, A.C.: Abduction in Logic Programming. In: Computational Logic: Logic Programming and Beyond, pp. 402–436 (2002)

    Google Scholar 

  28. Doherty, P., Kertes, S., Magnusson, M., Szalas, A.: Towards a Logical Analysis of Biochemical Pathways. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 667–679. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  29. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 13, 81–132 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  30. Allen, J., Kautz, H., Pelavin, R., Tenenberg, J.: Reasoning about plans. Morgan Kaufmann, San Mateo (1991)

    MATH  Google Scholar 

  31. Missiaen, M., Bruynooghe, L., Denecker, M.: CHICA: A planning system based on event calculus. J. Logic Comput. 5, 579–602 (1995)

    Article  MATH  Google Scholar 

  32. Poole, D.: A logical framework for default reasoning. Artificial Intelligence 36, 27–48 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  33. Eshghi, K., Kowalski, R.: Abduction compated with negation as failure. In: Proc. 6th Inter. Conf. in Logic Programming, pp. 234–255 (1989)

    Google Scholar 

  34. Boutilier, C.: Abduction to plausible causes: An even based model of belief update. Artificial Intelligence 83, 143–166 (1996)

    Article  MathSciNet  Google Scholar 

  35. Rzhetsky, A., Iossifov, I., Koike, T., Krauthammer, M., Kra, P., Morris, M., Yu, H., Duboue, P.A., Weng, W., Wilbur, W.J., Hatzivassiloglou, V., Friedman, C.: Geneways: a system for extracting, analyzing, visualizing, and integrating molecular pathway data. J. of Biomedical Informatics 37, 43–53 (2004)

    Article  Google Scholar 

  36. Bouwmeester, T., et al.: A physical and functional map of the human TNF-alpha/NF-kappaB signal transduction pathway. Nat. Cell. Biol. 6, 97–105 (2004)

    Article  Google Scholar 

  37. Xenarios, I., Rice, D.E., Salwinski, L., Baron, M.K., Marcotte, E.M., Eisenberg, D.: Dip: The database of interacting proteins. Nucleic Acids Research 28, 289–291 (2000)

    Article  Google Scholar 

  38. Bader, G.D., Donaldson, I., Wolting, C., Ouellette, B.F.F., Pawson, T., Hogue, C.W.V.: Bind the biomolecular interaction network database. Nucleic Acids Research 29, 242–245 (2001)

    Article  Google Scholar 

  39. Demir, E., Babur, O., Dogrusoz, U., Gursoy, A., Ayaz, A., Gulesir, G., Nisanci, G., Cetin-Atalay, R.: An ontology for collaborative construction and analysis of cellular pathways. Bioinformatics 20, 349–356 (2004)

    Article  Google Scholar 

  40. Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., de Bono, B., Jassal, B., Gopinath, G., Wu, G., Matthews, L., Lewis, S., Birney, E., Stein, L.: Reactome: a knowledgebase of biological pathways. Nucl. Acids Res. 33, D428–D432 (2005)

    Google Scholar 

  41. Michael, D., Oren, M.: The p53 and Mdm2 families in cancer. Curr. Opin. Genet. Dev. 12, 53–59 (2002)

    Article  Google Scholar 

  42. Hamid, T., Kakar, S.: PTTG/securin activates expression of p53 and modulates its function. Mol. Cancer. 3, 18 (2004)

    Article  Google Scholar 

  43. Bode, A.M., Dong, Z.: Post-translational modification of p53 in tumorigenesis. Nat. Rev. Cancer. 4, 793–805 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tran, N., Baral, C., Nagaraj, V.J., Joshi, L. (2005). Knowledge-Based Integrative Framework for Hypothesis Formation in Biochemical Networks. In: Ludäscher, B., Raschid, L. (eds) Data Integration in the Life Sciences. DILS 2005. Lecture Notes in Computer Science(), vol 3615. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11530084_11

Download citation

  • DOI: https://doi.org/10.1007/11530084_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27967-9

  • Online ISBN: 978-3-540-31879-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics