[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Morphometry of the Hippocampus Based on a Deformable Model and Support Vector Machines

  • Conference paper
Artificial Intelligence in Medicine (AIME 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3581))

Included in the following conference series:

Abstract

This paper presents an effective representation scheme for the statistical shape analysis of the hippocampal structure and its shape classification: Morphometry of the hippocampus. The deformable model based on FEM (Finite Element Method) and ICP (Iterative Closest Point) algorithm allows us to represent parametric surfaces and to normalize multi-resolution shapes. Such deformable surfaces and 3D skeletons extracted from the voxel representations are stored in the Octree data structure. And, it will be used for the hierarchical shape analysis. We have trained SVM (Support Vector Machine) for classifying between the control and patient groups. Results suggest that the presented representation scheme provides various level of shape representation and SVM can be a useful classifier in analyzing the statistical shape of the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dean, D., Buckley, P., Bookstein, F., Kamath, J., Kwon, D., Friedman, L., Lys, C.: Three dimensional MR-based morphometric comparison of schizophrenic and normal cerebral ventricles. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 363–372. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  2. Styner, M., Gerig, G., Pizer, S., Joshi, S.: Automatic and robust computation of 3D medial models incorporating object variability. International Journal of Computer Vision 55(2/3), 107–122 (2003)

    Article  Google Scholar 

  3. Brechbuhler, C., Gerig, G., Kubler, O.: Parameterization of closed surfaces for 3D shape description. Computer Vision, Graphics, Image Processing: Image Understanding 61, 154–170 (1995)

    Article  Google Scholar 

  4. Kelemen, A., Szekely, G., Gerig, G.: Elastic Model based Segmentation of 3D Neuroradiological Data Sets. IEEE Transaction on Med. Im. 18(10), 823–839 (1999)

    Google Scholar 

  5. Geric, G.: http://www.cs.unc.edu/~gerig/pub.html

  6. Gibson, S.F.F., Mirtich, B.: A survey of deformable modeling in computer graphics. MERL-A Mitsubishi Electric Research Laboratory, TR-97-19 (1997)

    Google Scholar 

  7. McInerney, T., Terzopoulos, D.: Deformable models in medical images analysis: a survey. Medical Image Analysis 1(2), 91–108 (1996)

    Article  Google Scholar 

  8. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of Eugenics 7, 179–188 (1936)

    Google Scholar 

  9. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  10. Karabassi, E.A., Papaioannou, G., Theoharis, T.: A Fast Depth-Buffer-Based Voxelization Algorithm. Journal of Graphics Tools, ACM 4(4), 5–10 (1999)

    Google Scholar 

  11. Choi, S.M., Kim, M.H.: Shape Reconstruction from Partially Missing Data in Modal Space. Computers & Graphics 26(5), 701–708 (2002)

    Article  Google Scholar 

  12. Bathe, K.: Finite Element Procedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  13. Zhang, Z.: Iterative point matching for registration of freeform curves and surfaces. International Journal of Computer Vision 13(2), 119–152 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, JS., Kim, YG., Choi, SM., Kim, MH. (2005). Morphometry of the Hippocampus Based on a Deformable Model and Support Vector Machines. In: Miksch, S., Hunter, J., Keravnou, E.T. (eds) Artificial Intelligence in Medicine. AIME 2005. Lecture Notes in Computer Science(), vol 3581. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527770_48

Download citation

  • DOI: https://doi.org/10.1007/11527770_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27831-3

  • Online ISBN: 978-3-540-31884-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics