Abstract
We describe FIRE, a content-based image retrieval system, and the methods we used within this system in the ImageCLEF 2004 evaluation. In FIRE, various features are available to represent images. The diversity of available features allows the user to adapt the system to the task at hand. A weighted combination of features admits flexible query formulations and helps with processing specific queries. For the ImageCLEF 2004 evaluation, we used the image content alone and obtained the best result in the category “only visual features, fully automatic retrieval” in the medical retrieval task. Additionally, the results compare favorably to other systems, even if they make use of the textual information in addition to the images.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval: The end of the early years. IEEE Trans. on Pattern Analysis and Machine Intelligence 22, 1349–1380 (2000)
Müller, H., Müller, W., Marchand-Maillet, S., Squire, D.M.: Strategies for positive and negative relevance feedback in image retrieval. In: International Conference on Pattern Recognition, Barcelona, Spain. Computer Vision and Image Analysis, vol. 1, pp. 1043–1046 (2000)
Deselaers, T.: Features for image retrieval. Diploma thesis, Lehrstuhl für Informatik VI, RWTH Aachen University, Aachen, Germany (2003)
Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D., Equitz, W.: Efficient and effective querying by image content. Journal of Intelligent Information Systems 3, 231–262 (1994)
Puzicha, J., Rubner, Y., Tomasi, C., Buhmann, J.: Empirical evaluation of dissimilarity measures for color and texture. In: International Conference on Computer Vision, Corfu, Greece, vol. 2, pp. 1165–1173 (1999)
Keysers, D., Gollan, C., Ney, H.: Classification of medical images using non-linear distortion models. In: Bildverarbeitung für die Medizin, Berlin, Germany, pp. 366–370 (2004)
Keysers, D., Gollan, C., Ney, H.: Local context in non-linear deformation models for handwritten character recognition. In: International Conference on Pattern Recognition, Cambridge, UK, vol. 4, pp. 511–514 (2004)
Keysers, D., Macherey, W., Ney, H., Dahmen, J.: Adaptation in statistical pattern recognition using tangent vectors. IEEE Trans. on Pattern Analysis and Machine Intelligence 26, 269–274 (2004)
Haberäcker, P.: Praxis der Digitalen Bildverarbeitung und Mustererkennung. Carl Hanser Verlag, München (1995)
Haralick, R.M., Shanmugam, B., Dinstein, I.: Texture features for image classification. IEEE Trans. on Systems, Man, and Cybernetics 3, 610–621 (1973)
Gu, Z.Q., Duncan, C.N., Renshaw, E., Mugglestone, M.A., Cowan, C.F.N., Grant, P.M.: Comparison of techniques for measuring cloud texture in remotely sensed satellite meteorological image data. Radar and Signal Proc. 136, 236–248 (1989)
Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Trans. on Systems, Man, and Cybernetics 8, 460–472 (1978)
Siggelkow, S.: Feature Histograms for Content-Based Image Retrieval. PhD thesis, University of Freiburg, Institute for Computer Science, Freiburg, Germany (2002)
Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval – a quantitative comparison. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 228–236. Springer, Heidelberg (2004)
Clough, P., Müller, H., Sanderson, M.: The CLEF Cross Language Image Retrieval Track (ImageCLEF) 2004. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 597–613. Springer, Heidelberg (2005)
Deselaers, T., Keysers, D., Ney, H.: Classification error rate for quantitative evaluation of content-based image retrieval systems. In: International Conference on Pattern Recognition, Cambridge, UK, vol. 2, pp. 505–508 (2004)
Lehmann, T., Güld, M., Thies, C., Fischer, B., Spitzer, K., Keysers, D., Ney, H., Kohnen, M., Schubert, H., Wein, B.: The irma project – a state of the art report on content-based image retrieval in medical applications. In: Korea-Germany Joint Workshop on Advanced Medical Image Processing, Seoul, Korea, pp. 161–171 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Deselaers, T., Keysers, D., Ney, H. (2005). FIRE – Flexible Image Retrieval Engine: ImageCLEF 2004 Evaluation. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds) Multilingual Information Access for Text, Speech and Images. CLEF 2004. Lecture Notes in Computer Science, vol 3491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11519645_67
Download citation
DOI: https://doi.org/10.1007/11519645_67
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27420-9
Online ISBN: 978-3-540-32051-7
eBook Packages: Computer ScienceComputer Science (R0)