[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

FIRE – Flexible Image Retrieval Engine: ImageCLEF 2004 Evaluation

  • Conference paper
Multilingual Information Access for Text, Speech and Images (CLEF 2004)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3491))

Included in the following conference series:

Abstract

We describe FIRE, a content-based image retrieval system, and the methods we used within this system in the ImageCLEF 2004 evaluation. In FIRE, various features are available to represent images. The diversity of available features allows the user to adapt the system to the task at hand. A weighted combination of features admits flexible query formulations and helps with processing specific queries. For the ImageCLEF 2004 evaluation, we used the image content alone and obtained the best result in the category “only visual features, fully automatic retrieval” in the medical retrieval task. Additionally, the results compare favorably to other systems, even if they make use of the textual information in addition to the images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval: The end of the early years. IEEE Trans. on Pattern Analysis and Machine Intelligence 22, 1349–1380 (2000)

    Article  Google Scholar 

  2. Müller, H., Müller, W., Marchand-Maillet, S., Squire, D.M.: Strategies for positive and negative relevance feedback in image retrieval. In: International Conference on Pattern Recognition, Barcelona, Spain. Computer Vision and Image Analysis, vol. 1, pp. 1043–1046 (2000)

    Google Scholar 

  3. Deselaers, T.: Features for image retrieval. Diploma thesis, Lehrstuhl für Informatik VI, RWTH Aachen University, Aachen, Germany (2003)

    Google Scholar 

  4. Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D., Equitz, W.: Efficient and effective querying by image content. Journal of Intelligent Information Systems 3, 231–262 (1994)

    Article  Google Scholar 

  5. Puzicha, J., Rubner, Y., Tomasi, C., Buhmann, J.: Empirical evaluation of dissimilarity measures for color and texture. In: International Conference on Computer Vision, Corfu, Greece, vol. 2, pp. 1165–1173 (1999)

    Google Scholar 

  6. Keysers, D., Gollan, C., Ney, H.: Classification of medical images using non-linear distortion models. In: Bildverarbeitung für die Medizin, Berlin, Germany, pp. 366–370 (2004)

    Google Scholar 

  7. Keysers, D., Gollan, C., Ney, H.: Local context in non-linear deformation models for handwritten character recognition. In: International Conference on Pattern Recognition, Cambridge, UK, vol. 4, pp. 511–514 (2004)

    Google Scholar 

  8. Keysers, D., Macherey, W., Ney, H., Dahmen, J.: Adaptation in statistical pattern recognition using tangent vectors. IEEE Trans. on Pattern Analysis and Machine Intelligence 26, 269–274 (2004)

    Article  Google Scholar 

  9. Haberäcker, P.: Praxis der Digitalen Bildverarbeitung und Mustererkennung. Carl Hanser Verlag, München (1995)

    MATH  Google Scholar 

  10. Haralick, R.M., Shanmugam, B., Dinstein, I.: Texture features for image classification. IEEE Trans. on Systems, Man, and Cybernetics 3, 610–621 (1973)

    Article  Google Scholar 

  11. Gu, Z.Q., Duncan, C.N., Renshaw, E., Mugglestone, M.A., Cowan, C.F.N., Grant, P.M.: Comparison of techniques for measuring cloud texture in remotely sensed satellite meteorological image data. Radar and Signal Proc. 136, 236–248 (1989)

    Article  Google Scholar 

  12. Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Trans. on Systems, Man, and Cybernetics 8, 460–472 (1978)

    Article  Google Scholar 

  13. Siggelkow, S.: Feature Histograms for Content-Based Image Retrieval. PhD thesis, University of Freiburg, Institute for Computer Science, Freiburg, Germany (2002)

    Google Scholar 

  14. Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval – a quantitative comparison. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 228–236. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Clough, P., Müller, H., Sanderson, M.: The CLEF Cross Language Image Retrieval Track (ImageCLEF) 2004. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 597–613. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Deselaers, T., Keysers, D., Ney, H.: Classification error rate for quantitative evaluation of content-based image retrieval systems. In: International Conference on Pattern Recognition, Cambridge, UK, vol. 2, pp. 505–508 (2004)

    Google Scholar 

  17. Lehmann, T., Güld, M., Thies, C., Fischer, B., Spitzer, K., Keysers, D., Ney, H., Kohnen, M., Schubert, H., Wein, B.: The irma project – a state of the art report on content-based image retrieval in medical applications. In: Korea-Germany Joint Workshop on Advanced Medical Image Processing, Seoul, Korea, pp. 161–171 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deselaers, T., Keysers, D., Ney, H. (2005). FIRE – Flexible Image Retrieval Engine: ImageCLEF 2004 Evaluation. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds) Multilingual Information Access for Text, Speech and Images. CLEF 2004. Lecture Notes in Computer Science, vol 3491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11519645_67

Download citation

  • DOI: https://doi.org/10.1007/11519645_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27420-9

  • Online ISBN: 978-3-540-32051-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics