Abstract
In multicluster systems, and more generally, in grids, jobs may require co-allocation, i.e., the simultaneous allocation of resources such as processors and input .les in multiple clusters. While such jobs may have reduced runtimes because they have access to more resources, waiting for processors in multiple clusters and for the input .les to become available in the right locations, may introduce ine.ciencies. In this paper we present the design of KOALA, a prototype for processor and data co-allocation that tries to minimize these ine.ciencies through the use of its Close-to-Files placement policy and its Incremental Claiming Policy. The latter policy tries to solve the problem of a lack of support for reservation by local resource managers.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Czajkowski, K., Foster, I.T., Kesselman, C.: Resource Co-Allocation in Computational Grids. In: Proc. of the Eighth IEEE International Symposium on High Performance Distributed Computing (HPDC-8), pp. 219–228 (1999)
van Nieuwpoort, R., Maassen, J., Bal, H., Kielmann, T., Veldema, R.: Wide-Area Parallel Programming Using the Remote Method Invocation Method. Concurrency: Practice and Experience 12, 643–666 (2000)
Banen, S., Bucur, A., Epema, D.: A Measurement-Based Simulation Study of Processor Co-Allocation in Multicluster Systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 105–128. Springer, Heidelberg (2003)
Mohamed, H., Epema, D.: An Evaluation of the Close-to-Files Processor and Data Co-Allocation Policy in Multiclusters. In: Proc. of CLUSTER 2004, IEEE Int’l Conference Cluster Computing 2004 (2004)
Web-site: (The Distributed ASCI Supercomputer (DAS)), http://www.cs.vu.nl/das2
Web-site: (The Portable Batch System), http://www.openpbs.org
Bucur, A., Epema, D.: Local versus Global Queues with Processor Co-Allocation in Multicluster Systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 184–204. Springer, Heidelberg (2002)
Ananad, S., Yoginath, S., von Laszewski, G., Alunkal, B.: Flow-based Multistage Co-allocation Service. In: d’Auriol, B.J. (ed.) Proc. of the International Conference on Communications in Computing, Las Vegas, pp. 24–30. CSREA Press (2003)
Web-site: (The Portable Batch System), http://www.pbspro.com/
Web-site: (Maui Scheduler), http://supercluster.org/maui/
Web-site: (The Globus Toolkit), http://www.globus.org/
Web-site: (Iperf Version 1.7.0), http://dast.nlanr.net/Projects/Iperf/
Allcock, W., Bresnahan, J., Foster, I., Liming, L., Link, J., Plaszczac, P.: GridFTP Update. Technical report (2002)
Web-site: (A Grid Application Toolkit and Testbed ), http://www.gridlab.org/
Ernemann, C., Hamscher, V., Schwiegelshohn, U., Yahyapour, R., Streit, A.: On Advantages of Grid Computing for Parallel Job Scheduling. In: 2nd IEEE/ACM Int’l Symposium on Cluster Computing and the GRID (CCGrid2002), pp. 39–46 (2002)
Ernemann, C., Hamscher, V., Streit, A., Yahyapour, R.: Enhanced Algorithms for Multi-Site Scheduling. In: 3rd Int’l Workshop on Grid Computing, pp. 219–231 (2002)
Shan, H., Oliker, L., Biswas, R.: Job superscheduler architecture and performance in computational grid environments. In: Supercomputing 2003 (2003)
Raman, R., Livny, M., Solomon, M.: Policy driven heterogeneous resource co-allocation with gangmatching. In: 12th IEEE Int’l Symp. on High Performance Distributed Computing (HPDC-12), pp. 80–89. IEEE Computer Society Press, Los Alamitos (2003)
Ranganathan, K., Foster, I.: Decoupling Computation and Data Scheduling in Distributed Data-Intensive Applications. In: 11 th IEEE International Symposium on High Performance Distributed Computing HPDC-11 2002, Edinburgh, Scotland (2002)
Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K.: Mapping Abstract Complex Workflows onto Grid Environments. J. of Grid Computing 1, 25–39 (2003)
Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Vahi, G.M.K., Koranda, S., Lazzarini, A., Papa, M.A.: From Metadata to Execution on the Grid Pegasus and the Pulsar Search. Technical report (2003)
Foster, I., Vockler, J., Wilde, M., Zhao, Y.: Chimera: A Virtual Data System for Representing, Querying, and Automating Data Derivation. In: 14th Int’l Conf. on Scientific and Statistical Database Management (SSDBM 2002) (2002)
Frey, J., Tannenbaum, T., Foster, I., Livny, M., Tuecke, S.: Condor-G: A Computation Management Agent for Multi-Institutional Grids. In: Proceedings of the Tenth IEEE Symposium on High Performance Distributed Computing (HPDC), San Francisco, California, pp. 7–9 (2001)
Casanova, H., Obertelli, G., Berman, F., Wolski, R.: The AppLeS Parameter Sweep Template: User-Level Middleware for the Grid, pp. 75–76 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mohamed, H.H., Epema, D.H.J. (2005). The Design and Implementation of the KOALA Co-allocating Grid Scheduler. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds) Advances in Grid Computing - EGC 2005. EGC 2005. Lecture Notes in Computer Science, vol 3470. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11508380_65
Download citation
DOI: https://doi.org/10.1007/11508380_65
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26918-2
Online ISBN: 978-3-540-32036-4
eBook Packages: Computer ScienceComputer Science (R0)