[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Rough Set Based Computation Times Estimation on Knowledge Grid

  • Conference paper
Advances in Grid Computing - EGC 2005 (EGC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3470))

Included in the following conference series:

Abstract

Efficient estimating the application computation times of data mining is a key component of successful scheduling on Knowledge Grid. In this paper, we present a holistic approach to estimation that uses rough sets theory to determine a reduct and then compute a runtime estimate. The heuristic reduct algorithm is based on frequencies of attributes appeared in discernibility matrix. We also present to add dynamic information about the performances of various data mining tools over specific data sources to the Knowledge Grid service for supporting the estimation. This information can be added as additional metadata stored in Knowledge Metadata Repository of Grid. Experimental result validates our solution that rough sets provide a formal framework for the problem of application run times estimation in Grid environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Talia, D., Cannataro, M.: Knowledge grid: An architecture for distributed knowledge discovery. Communications of the ACM (2002)

    Google Scholar 

  2. Foster, I., Kasselman, C.: The Grid: blueprint for a future infrastructure. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  3. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S.: The Data Grid: towards an architecture for the distributed management and analysis of large scientific datasets. J. of Network and Comp. Appl. 23, 187–200 (2001)

    Article  Google Scholar 

  4. Downey, A.B.: Predicting Queue Times on Space-Sharing Parallel Computers. In: Proceedings of the 11th International Parallel Processing Symposium, pp. 209–218 (1997)

    Google Scholar 

  5. Gibbons, R.: A Historical Application Profiler for Use by Parallel Schedulers. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS, vol. 1297, pp. 58–75. Springer, Heidelberg (1997)

    Google Scholar 

  6. Smith, W., Foster, I., Taylor, V.: Predicting Application Runtimes Using Historical Information. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS 1998, and JSSPP 1998. LNCS, vol. 1459, pp. 122–142. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Smith, W., Taylor, V., Foster, I.: Using Runtime Predictions to Estimate Queue Wait Times and Improve Scheduler Performance. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1999, IPPS-WS 1999, and SPDP-WS 1999. LNCS, vol. 1659, pp. 202–229. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Orlando, S., Palmerini, P., Perego, R., Silvestri, F.: Scheduling high performance data mining tasks on a data grid environment. In: Proceedings of Europar (2002)

    Google Scholar 

  9. Hu, X.: Knowledge discovery in databases: An attribute-oriented rough set approach. Ph.D thesis, Regina university (1995)

    Google Scholar 

  10. Starzyk, J., Nelson, D.E., Sturtz, K.: Reduct generation in information systems. Bulletin of international rough set society 3, 19–22 (1998)

    Google Scholar 

  11. Komorowski, J., et al.: Rough Sets: A Tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough-Fuzzy Hybridization: A New Trend in Decision Making, pp. 3–98. Springer, Heidelberg (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gao, K., Ji, Y., Liu, M., Chen, J. (2005). Rough Set Based Computation Times Estimation on Knowledge Grid. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds) Advances in Grid Computing - EGC 2005. EGC 2005. Lecture Notes in Computer Science, vol 3470. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11508380_57

Download citation

  • DOI: https://doi.org/10.1007/11508380_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26918-2

  • Online ISBN: 978-3-540-32036-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics