Abstract
Efficient estimating the application computation times of data mining is a key component of successful scheduling on Knowledge Grid. In this paper, we present a holistic approach to estimation that uses rough sets theory to determine a reduct and then compute a runtime estimate. The heuristic reduct algorithm is based on frequencies of attributes appeared in discernibility matrix. We also present to add dynamic information about the performances of various data mining tools over specific data sources to the Knowledge Grid service for supporting the estimation. This information can be added as additional metadata stored in Knowledge Metadata Repository of Grid. Experimental result validates our solution that rough sets provide a formal framework for the problem of application run times estimation in Grid environment.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Talia, D., Cannataro, M.: Knowledge grid: An architecture for distributed knowledge discovery. Communications of the ACM (2002)
Foster, I., Kasselman, C.: The Grid: blueprint for a future infrastructure. Morgan Kaufmann, San Francisco (1999)
Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S.: The Data Grid: towards an architecture for the distributed management and analysis of large scientific datasets. J. of Network and Comp. Appl. 23, 187–200 (2001)
Downey, A.B.: Predicting Queue Times on Space-Sharing Parallel Computers. In: Proceedings of the 11th International Parallel Processing Symposium, pp. 209–218 (1997)
Gibbons, R.: A Historical Application Profiler for Use by Parallel Schedulers. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS, vol. 1297, pp. 58–75. Springer, Heidelberg (1997)
Smith, W., Foster, I., Taylor, V.: Predicting Application Runtimes Using Historical Information. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS 1998, and JSSPP 1998. LNCS, vol. 1459, pp. 122–142. Springer, Heidelberg (1998)
Smith, W., Taylor, V., Foster, I.: Using Runtime Predictions to Estimate Queue Wait Times and Improve Scheduler Performance. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1999, IPPS-WS 1999, and SPDP-WS 1999. LNCS, vol. 1659, pp. 202–229. Springer, Heidelberg (1999)
Orlando, S., Palmerini, P., Perego, R., Silvestri, F.: Scheduling high performance data mining tasks on a data grid environment. In: Proceedings of Europar (2002)
Hu, X.: Knowledge discovery in databases: An attribute-oriented rough set approach. Ph.D thesis, Regina university (1995)
Starzyk, J., Nelson, D.E., Sturtz, K.: Reduct generation in information systems. Bulletin of international rough set society 3, 19–22 (1998)
Komorowski, J., et al.: Rough Sets: A Tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough-Fuzzy Hybridization: A New Trend in Decision Making, pp. 3–98. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gao, K., Ji, Y., Liu, M., Chen, J. (2005). Rough Set Based Computation Times Estimation on Knowledge Grid. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds) Advances in Grid Computing - EGC 2005. EGC 2005. Lecture Notes in Computer Science, vol 3470. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11508380_57
Download citation
DOI: https://doi.org/10.1007/11508380_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26918-2
Online ISBN: 978-3-540-32036-4
eBook Packages: Computer ScienceComputer Science (R0)