[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Parametric Medial Shape Representation in 3-D via the Poisson Partial Differential Equation with Non-linear Boundary Conditions

  • Conference paper
Information Processing in Medical Imaging (IPMI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3565))

Abstract

This paper presents a new shape representation for a special class of 3-D objects. In a generative approach to object modeling inspired by m-reps [15], skeletons of objects are explicitly defined as continuous manifolds and boundaries are derived from the skeleton by a process that involves solving a Poisson PDE with a non-linear boundary condition. This formulation helps satisfy the equality constraints that are imposed on the parameters of the representation by rules of medial geometry. One benefit of the new approach is the ability to represent different instances of an anatomical structure using a common parametrization domain, simplifying the problem of computing correspondences between instances. Another benefit is the ability to continuously parameterize the volumetric region enclosed by the representation’s boundary in a one-to-one and onto manner, in a way that preserves two of the three coordinates of the parametrization along vectors normal to the boundary. These two features make the new representation an attractive candidate for statistical analysis of shape and appearance. In this paper, the representation is carefully defined and the results of fitting the hippocampus in a deformable templates framework are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blum, H., Nagel, R.N.: Shape description using weighted symmetric axis features. Pattern Recognition 10(3), 167–180 (1978)

    Article  MATH  Google Scholar 

  2. Chakos, M.H., Schobel, S.A., Gu, H., Gerig, G., Bradford, D., Charles, C., Lieberman, J.A.: Duration of illness and treatment effects on hippocampal volume in male patients with schizophrenia. Br. J. Psychiatry 186(1), 26–31 (2005)

    Article  Google Scholar 

  3. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models – their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

    Article  Google Scholar 

  4. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: European Conference on Computer Vision, Freiburg, Germany, June 1998, vol. 2, pp. 484–498 (1998)

    Google Scholar 

  5. Csernansky, J., Joshi, S., Wang, L., Haller, J., Gado, M., Miller, J., Grenander, U., Miller, M.: Hippocampal morphometry in schizophrenia via high dimensional brain mapping. Proc. National Academy of Sciences 95, 11406–11411 (1998)

    Google Scholar 

  6. Damon, J.: Determining the geometry of boundaries of objects from medial data. International Journal of Computer Vision 63(1), 45–64 (2005) (in print)

    Article  Google Scholar 

  7. Gerig, G., Styner, M., Shenton, M.E., Lieberman, J.: Shape versus size: Improved understanding of the morphology of brain structures. In: Niessen, W., Viergever, M. (eds.) Medical Image Computing and Computer-Assisted Intervention (MICCAI), New York, October 2001, vol. 2208, pp. 24–32. Springer, Heidelberg (2001)

    Google Scholar 

  8. Golland, P., Grimson, W.E.L., Kikinis, R.: Statistical shape analysis using fixed topology skeletons: Corpus callosum study. In: Kuba, A., Sámal, M., Todd-Pokropek, A. (eds.) IPMI 1999. LNCS, vol. 1613, pp. 382–388. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Haller, J.W., Banerjee, A., Christensen, G.E., Gado, M., Joshi, S., Miller, M.I., Sheline, Y.I., Vannier, M.W., Csernansky, J.G.: Three-dimensional hippocampal MR morphometry by high-dimensional transformation of a neuroanatomic atlas. Radiology 202, 504–510 (1997)

    Google Scholar 

  10. Ho, S., Gerig, G.: Profile scale-spaces for multiscale image match. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 176–183. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Joshi, S., Grenander, U., Miller, M.: On the geometry and shape of brain sub-manifolds. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 1317–1343 (1997)

    Google Scholar 

  12. Joshi, S., Pizer, S., Fletcher, P.T., Yushkevich, P., Thall, A., Marron, J.S.: Multiscale deformable model segmentation and statistical shape analysis using medial descriptions. IEEE Transactions on Medical Imaging 21(5), 538–550 (2002)

    Article  Google Scholar 

  13. Kreyszig, E.: Differential Geometry. University of Toronto Press (1959)

    Google Scholar 

  14. Kimia, B.B., Giblin, P.J.: On the intrinsic reconstruction of shape from its symmetries. IEEE PAMI 25(7), 895–911 (2003)

    Google Scholar 

  15. Pizer, S.M., Fletcher, P.T., Joshi, S., Thall, A., Chen, J.Z., Fridman, Y., Fritsch, D.S., Gash, A.G., Glotzer, J.M., Jiroutek, M.R., Lu, C., Muller, K.E., Tracton, G., Yushkevich, P., Chaney, E.L.: Deformable m-reps for 3D medical image segmentation. International Journal of Computer Vision 55(2), 85–106 (2003)

    Article  Google Scholar 

  16. Pizer, S.M., Siddiqi, K., Székely, G., Damon, J.N., Zucker, S.W.: Multiscale medial loci and their properties. International Journal of Computer Vision 55(2- 3), 155–179 (2003)

    Article  Google Scholar 

  17. Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. Journal of Future Generation Computer Systems 20(3), 475–487 (2004)

    Article  Google Scholar 

  18. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press, Oxford (1985)

    MATH  Google Scholar 

  19. Staib, L.H., Duncan, J.S.: Boundary finding with parametrically deformable models. IEEE PAMI 14(11), 1061–1075 (1992)

    Google Scholar 

  20. Styner, M., Gerig, G., Joshi, S., Pizer, S.M.: Automatic and robust computation of 3D medial models incorporating object variability. International Journal of Computer Vision 55(2), 107–122 (2003)

    Article  Google Scholar 

  21. Thall, A.: Deformable Solid Modeling via Medial Sampling and Displacement Subdivision. PhD thesis, Dept. of Comp. Sci. UNC Chapel Hill (2004)

    Google Scholar 

  22. Yushkevich, P., Fletcher, P.T., Joshi, S., Thall, A., Pizer, S.M.: Continuous medial representations for geometric object modeling in 2D and 3D. Image and Vision Computing 21(1), 17–28 (2003)

    Article  Google Scholar 

  23. Yushkevich, P., Pizer, S.M., Joshi, S., Marron, J.S.: Intuitive, localized analysis of shape variability. In: International Conference on Information Processing in Medical Imaging, Berlin, Germany, pp. 402–408. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yushkevich, P.A., Zhang, H., Gee, J.C. (2005). Parametric Medial Shape Representation in 3-D via the Poisson Partial Differential Equation with Non-linear Boundary Conditions. In: Christensen, G.E., Sonka, M. (eds) Information Processing in Medical Imaging. IPMI 2005. Lecture Notes in Computer Science, vol 3565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505730_14

Download citation

  • DOI: https://doi.org/10.1007/11505730_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26545-0

  • Online ISBN: 978-3-540-31676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics