[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Pareto-Optimal Hardware for Digital Circuits Using SPEA

  • Conference paper
Innovations in Applied Artificial Intelligence (IEA/AIE 2005)

Abstract

In this paper, we focus on engineering Paretooptimal digital circuits given the expected input/output behaviour with a minimal design effort. The design objectives to be minimised are: hardware area, response time and power consumption. We do so using the Strength Pareto Evolutionary Algorithms. The performance and the quality of the circuit evolved for some benchmarks are presented then compared to those of single objective genetic algorithms as well as to the circuits obtained by human designers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zitzler, E., Thiele, L.: Multi0objective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

  2. Ercegovac, M.D., Lang, T., Moreno, J.H.: Introduction to digital systems. John Wiley, Chichester (1999)

    Google Scholar 

  3. Hsiao, M.S.: Peak power estimation using genetic spot optimization for large VLSI circuits. In: Proc. European Conference on Design, Automation and Test, March 1999, pp. 175–179 (1999)

    Google Scholar 

  4. Najm, F.N.: A survey of power estimation techniques in VLSI circuits. IEEE Transactions on VLSI Systems 2(4), 446–455 (1994)

    Article  Google Scholar 

  5. Coello, C.A.: A short tutorial on evolutionary multi-objective optimisation. In: Proc. First Conference on Evolutionary Multi-Criterion Optimisation (2001)

    Google Scholar 

  6. Edgeworth, F.Y.: Mathematical psychics: an essay on the application of mathematics to the moral sciences. In: Kelley, A.M. (ed.), New York (1967)

    Google Scholar 

  7. Pareto, V.: Cours d’économie politique, volume I, II, F. Rouge, Lausanne (1896)

    Google Scholar 

  8. Rosenman, M.A., Gero, J.S.: Reducing the Pareto set in multi-criterion optimisation. Engineering Optimisation 8(3), 189–206 (1985)

    Article  Google Scholar 

  9. Horn, J., Nafpliotis, N., Goldber, D.: A niched Pareto genetic algorithm for multi-objective optimisation. In: Proc. IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, vol. 1, pp. 82–87 (1994)

    Google Scholar 

  10. Nedjah, N., Mourelle, L.M.: A comparison of two circuit representations for evolutionary digital circuit design. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS, vol. 3029, pp. 351–360. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Coelho, A., Christiansen, A., Aguirre, A.: Towards automated evolutionary design of combinational circuits. Comput. Electr. Eng. 27, 1–28 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nedjah, N., de Macedo Mourelle, L. (2005). Pareto-Optimal Hardware for Digital Circuits Using SPEA. In: Ali, M., Esposito, F. (eds) Innovations in Applied Artificial Intelligence. IEA/AIE 2005. Lecture Notes in Computer Science(), vol 3533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11504894_72

Download citation

  • DOI: https://doi.org/10.1007/11504894_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26551-1

  • Online ISBN: 978-3-540-31893-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics