Abstract
This paper presents a framework for planning and scheduling integration based on a uniform constraint-based representation. Such representation is inspired to time-line based planning but has the unique characteristic of conceiving both resource and causal constraints as abstract specifications that generate segments of temporal evolution to be scheduled on the time-line. This paper describes the general idea behind this type of problem solving, shows how it has been implemented in a software architecture called Omp, and presents an example of application for the generation of mission planning commands for automating the management of spacecraft operations.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bäckström, C.: Computational Complexity of Reasoning About Plans. PhD thesis, Linköping University (1992)
Cesta, A., Cortellessa, G., Oddi, A., Policella, N.: A CSP-Based Interactive Decision Aid for Space Mission Planning. In: Cappelli, A., Turini, F. (eds.) AI*IA 2003. LNCS, vol. 2829, Springer, Heidelberg (2003)
Cesta, A., Fratini, S., Oddi, A.: Planning with Concurrency, Time and Resources: A CSPBased Approach. In: Vlahavas, I., Vrakas, D. (eds.) Intelligent Techniques for Planning, Idea Group Publishing (2004)
Cesta, A., Oddi, A.: DDL.1: A Formal Description of a Constraint Representation Language for Physical Domains. In: Ghallab, M.M., Milani, A. (eds.) New Directions in AI Planning, IOS Press, Amsterdam (1996)
Cesta, A., Oddi, A., Smith, S.F.: A Constraint-based method for Project Scheduling with Time Windows. Journal of Heuristics 8(1), 109–136 (2002)
Chien, S., Rabideau, G., Knight, R., Sherwood, R., Engelhardt, B., Mutz, D., Estlin, T., Smith, B., Fisher, F., Barrett, T., Stebbins, G., Tran, D.: ASPEN - Automating Space Mission Operations using Automated Planning and Scheduling. In: Proceedings of SpaceOps (2000)
Currie, K.W., Tate, A.: O-Plan: Control in the Open Planning Architecture. Artificial Intelligence 51, 49–86 (1991)
Dechter, R., Meiri, I., Pearl, J.: Temporal Constraint Networks. Artificial Intelligence 49, 61–95 (1991)
Fox, M., Long, D.: PDDL 2.1: An extension to PDDL for expressing temporal planning domains. Journal of Artificial Intelligence Research 20, 61–124 (2003)
Frank, J., Jonsson, A.: Constraint based attribute and interval planning. Journal of Constraints 8(4), 339–364 (2003)
Jonsson, A.K., Morris, P.H., Muscettola, N., Rajan, K., Smith, B.: Planning in Interplanetary Space: Theory and Practice. In: Proceedings of the Fifth Int. Conf. on Artificial Intelligence Planning and Scheduling, AIPS-00 (2000)
Laborie, P.: Algorithms for Propagating Resource Constraints in AI Planning and Scheduling: Existing Approaches and new Results. Artificial Intelligence 143, 151–188 (2003)
Laborie, P., Ghallab, M.: Planning with Sharable Resource Constraints. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI-95 (1995)
Muscettola, N., Smith, S.F., Cesta, A., D’Aloisi, D.: Coordinating Space Telescope Operations in an Integrated Planning and Scheduling Architecture. IEEE Control Systems 12(1), 28–37 (1992)
Tsang, E.P.K.: Foundation of Constraint Satisfaction. Academic Press, London, San Diego, CA (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cesta, A., Fratini, S. (2005). Controlling Complex Physical Systems Through Planning and Scheduling Integration. In: Ali, M., Esposito, F. (eds) Innovations in Applied Artificial Intelligence. IEA/AIE 2005. Lecture Notes in Computer Science(), vol 3533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11504894_29
Download citation
DOI: https://doi.org/10.1007/11504894_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26551-1
Online ISBN: 978-3-540-31893-4
eBook Packages: Computer ScienceComputer Science (R0)