Abstract
The Automated Multiple View Inspection (AMVI) has been recently developed for automated defect detection of manufactured objects. The approach detects defects by analysing image sequences in two steps. In the first step, potential defects are automatically identified in each image of the sequence. In the second step, the potential defects are tracked in the sequence. The key idea of this strategy is that only the existing defects (and not the false detections) can be successfully tracked in the image sequence because they are located in positions dictated by the motion of the test object. The AMVI strategy was successfully implemented for calibrated image sequences. However, it is not simple to implement it in industrial environments because the calibration process is a difficult task and unstable. In order to avoid the mentioned disadvantages, in this paper we propose a new AMVI strategy based on the tracking of potential detects in uncalibrated image sequences. Our approach tracks the potential defects based on a motion model estimated from the image sequence self. Thus, we obtain a motion model by matching structure points of the images. We show in our experimental results on aluminium die castings that the detection is promising in uncalibrated images by detecting 92.3% of all existing defects with only 0.33 false alarms per image.
Chapter PDF
Similar content being viewed by others
References
Mery, D., Filbert, D.: Automated flaw detection in aluminum castings based on the tracking of potential defects in a radioscopic image sequence. IEEE Trans. Robotics and Automation 18, 890–901 (2002)
Kita, Y., Highnam, R., Brady, M.: Correspondence between different view breast X-rays using curved epipolar lines. Computer, Vision and Understanding 83, 38–56 (2001)
Hartley, R.I., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press, Cambridge (2000)
Haralick, R., Shapiro, L.: Computer and robot vision. Addison-Wesley Publishing Co., New York (1992)
Castleman, K.: Digital image processing. Prentice-Hall, Englewood Cliffs (1996)
Mery, D.: Crossing line profile: a new approach to detecting defects in aluminium castings. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 725–732. Springer, Heidelberg (2003)
Mery, D., Ochoa, F., Vidal, R.: Tracking of points in a calibrated and noisy image sequence. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3211, pp. 647–654. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mery, D., Carrasco, M. (2005). Automated Multiple View Inspection Based on Uncalibrated Image Sequences. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds) Image Analysis. SCIA 2005. Lecture Notes in Computer Science, vol 3540. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499145_125
Download citation
DOI: https://doi.org/10.1007/11499145_125
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26320-3
Online ISBN: 978-3-540-31566-7
eBook Packages: Computer ScienceComputer Science (R0)